
 DEPT OF CSE & IT

 VSSUT, Burla

SYLLABUS

Module I:

Introductory concepts: Introduction, definition, objectives, Life cycle – Requirements analysis

and specification. Design and Analysis: Cohesion and coupling, Data flow oriented Design:

Transform centered design, Transaction centered design. Analysis of specific systems like

Inventory control, Reservation system.

Module II:

Object-oriented Design: Object modeling using UML, use case diagram, class diagram,

interaction diagrams: activity diagram, unified development process.

Module III:

Implementing and Testing: Programming language characteristics, fundamentals, languages,

classes, coding style efficiency. Testing: Objectives, black box and white box testing, various

testing strategies, Art of debugging. Maintenance, Reliability and Availability: Maintenance:

Characteristics, controlling factors, maintenance tasks, side effects, preventive maintenance – Re

Engineering – Reverse Engineering – configuration management – Maintenance tools and

techniques. Reliability: Concepts, Errors, Faults, Repair and availability, reliability and

availability models. Recent trends and developments.

Module IV:

Software quality: SEI CMM and ISO-9001. Software reliability and fault-tolerance, software

project planning, monitoring, and control. Computer-aided software engineering (CASE),

Component model of software development, Software reuse.

Text Book:

1. Mall Rajib, Fundamentals of Software Engineering, PHI.

2. Pressman, Software Engineering Practitioner’s Approach, TMH.

 DEPT OF CSE & IT

 VSSUT, Burla

CONTENTS

Module 1:

 Lecture 1: Introduction to Software Engineering

Lecture 2: Software Development Life Cycle- Classical Waterfall Model

Lecture 3: Iterative Waterfall Model, Prototyping Model, Evolutionary Model

Lecture 4: Spiral Model

Lecture 5: Requirements Analysis and Specification

 Lecture 6: Problems without a SRS document, Decision Tree, Decision Table

Lecture 7: Formal System Specification

Lecture 8: Software Design

Lecture 9: Software Design Strategies

Lecture 10: Software Analysis & Design Tools

Lecture 11: Structured Design

Module 2:

Lecture 12: Object Modelling Using UML

Lecture 13: Use Case Diagram

Lecture 14: Class Diagrams

Lecture 15: Interaction Diagrams

Lecture 16: Activity and State Chart Diagram

 DEPT OF CSE & IT

 VSSUT, Burla

Module 3:

Lecture 17: Coding

Lecture 18: Testing

Lecture 19: Black-Box Testing

Lecture 20: White-Box Testing

Lecture 21: White-Box Testing (cont..)

Lecture 22: Debugging, Integration and System Testing

Lecture 23: Integration Testing

Lecture 24: Software Maintenance

Lecture 25: Software Maintenance Process Models

Lecture 26: Software Reliability and Quality Management

Lecture 27: Reliability Growth Models

Module 4:

 Lecture 28: Software Quality

 Lecture 29: SEI Capability Maturity Model

 Lecture 30: Software Project Planning

 Lecture 31: Metrics for Software Project Size Estimation

 Lecture 32: Heuristic Techniques, Analytical Estimation Techniques

 Lecture 33: COCOMO Model

 Lecture 34: Intermediate COCOMO Model

 Lecture 35: Staffing Level Estimation

 DEPT OF CSE & IT

 VSSUT, Burla

 Lecture 36: Project Scheduling

 Lecture 37: Organization Structure

 Lecture 38: Risk Management

 Lecture 39: Computer Aided Software Engineering

 Lecture 40: Software Reuse

 Lecture 41: Reuse Approach

 References

 DEPT OF CSE & IT

 VSSUT, Burla

MODULE 1

LECTURE NOTE 1

INTRODUCTION TO SOFTWARE ENGINEERING

The term software engineering is composed of two words, software and engineering.

Software is more than just a program code. A program is an executable code, which serves

some computational purpose. Software is considered to be a collection of executable

programming code, associated libraries and documentations. Software, when made for a

specific requirement is called software product.

Engineering on the other hand, is all about developing products, using well-defined, scientific

principles and methods.

So, we can define software engineering as an engineering branch associated with the

development of software product using well-defined scientific principles, methods and

procedures. The outcome of software engineering is an efficient and reliable software product.

IEEE defines software engineering as:

The application of a systematic, disciplined, quantifiable approach to the development,

operation and maintenance of software.

We can alternatively view it as a systematic collection of past experience. The experience is

arranged in the form of methodologies and guidelines. A small program can be written without

using software engineering principles. But if one wants to develop a large software product, then

software engineering principles are absolutely necessary to achieve a good quality software cost

effectively.

Without using software engineering principles it would be difficult to develop large programs. In

industry it is usually needed to develop large programs to accommodate multiple functions. A

problem with developing such large commercial programs is that the complexity and difficulty

levels of the programs increase exponentially with their sizes. Software engineering helps to

reduce this programming complexity. Software engineering principles use two important

techniques to reduce problem complexity: abstraction and decomposition. The principle of

abstraction implies that a problem can be simplified by omitting irrelevant details. In other

words, the main purpose of abstraction is to consider only those aspects of the problem that are

relevant for certain purpose and suppress other aspects that are not relevant for the given

purpose. Once the simpler problem is solved, then the omitted details can be taken into

consideration to solve the next lower level abstraction, and so on. Abstraction is a powerful way

of reducing the complexity of the problem. The other approach to tackle problem complexity is

 DEPT OF CSE & IT

 VSSUT, Burla

decomposition. In this technique, a complex problem is divided into several smaller problems

and then the smaller problems are solved one by one. However, in this technique any random

decomposition of a problem into smaller parts will not help. The problem has to be decomposed

such that each component of the decomposed problem can be solved independently and then the

solution of the different components can be combined to get the full solution. A good

decomposition of a problem should minimize interactions among various components. If the

different subcomponents are interrelated, then the different components cannot be solved

separately and the desired reduction in complexity will not be realized.

NEED OF SOFTWARE ENGINEERING

The need of software engineering arises because of higher rate of change in user requirements

and environment on which the software is working.

 Large software - It is easier to build a wall than to a house or building, likewise, as the

size of software become large engineering has to step to give it a scientific process.

 Scalability- If the software process were not based on scientific and engineering

concepts, it would be easier to re-create new software than to scale an existing one.

 Cost- As hardware industry has shown its skills and huge manufacturing has lower down

the price of computer and electronic hardware. But the cost of software remains high if

proper process is not adapted.

 Dynamic Nature- The always growing and adapting nature of software hugely depends

upon the environment in which the user works. If the nature of software is always

changing, new enhancements need to be done in the existing one. This is where software

engineering plays a good role.

 Quality Management- Better process of software development provides better and

quality software product.

CHARACTERESTICS OF GOOD SOFTWARE

A software product can be judged by what it offers and how well it can be used. This software

must satisfy on the following grounds:

 Operational

 Transitional

 Maintenance

 DEPT OF CSE & IT

 VSSUT, Burla

Well-engineered and crafted software is expected to have the following characteristics:

Operational

This tells us how well software works in operations. It can be measured on:

 Budget

 Usability

 Efficiency

 Correctness

 Functionality

 Dependability

 Security

 Safety

Transitional

This aspect is important when the software is moved from one platform to another:

 Portability

 Interoperability

 Reusability

 Adaptability

Maintenance

This aspect briefs about how well a software has the capabilities to maintain itself in the ever-

changing environment:

 Modularity

 Maintainability

 Flexibility

 Scalability

In short, Software engineering is a branch of computer science, which uses well-defined

engineering concepts required to produce efficient, durable, scalable, in-budget and on-time

software products

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 2

SOFTWARE DEVELOPMENT LIFE CYCLE

LIFE CYCLE MODEL

A software life cycle model (also called process model) is a descriptive and diagrammatic

representation of the software life cycle. A life cycle model represents all the activities required

to make a software product transit through its life cycle phases. It also captures the order in

which these activities are to be undertaken. In other words, a life cycle model maps the different

activities performed on a software product from its inception to retirement. Different life cycle

models may map the basic development activities to phases in different ways. Thus, no matter

which life cycle model is followed, the basic activities are included in all life cycle models

though the activities may be carried out in different orders in different life cycle models. During

any life cycle phase, more than one activity may also be carried out.

THE NEED FOR A SOFTWARE LIFE CYCLE MODEL

The development team must identify a suitable life cycle model for the particular project and

then adhere to it. Without using of a particular life cycle model the development of a software

product would not be in a systematic and disciplined manner. When a software product is being

developed by a team there must be a clear understanding among team members about when and

what to do. Otherwise it would lead to chaos and project failure. This problem can be illustrated

by using an example. Suppose a software development problem is divided into several parts and

the parts are assigned to the team members. From then on, suppose the team members are

allowed the freedom to develop the parts assigned to them in whatever way they like. It is

possible that one member might start writing the code for his part, another might decide to

prepare the test documents first, and some other engineer might begin with the design phase of

the parts assigned to him. This would be one of the perfect recipes for project failure. A software

life cycle model defines entry and exit criteria for every phase. A phase can start only if its

phase-entry criteria have been satisfied. So without software life cycle model the entry and exit

criteria for a phase cannot be recognized. Without software life cycle models it becomes difficult

for software project managers to monitor the progress of the project.

Different software life cycle models

Many life cycle models have been proposed so far. Each of them has some advantages as well as

some disadvantages. A few important and commonly used life cycle models are as follows:

 Classical Waterfall Model

 DEPT OF CSE & IT

 VSSUT, Burla

 Iterative Waterfall Model

 Prototyping Model

 Evolutionary Model

 Spiral Model

1. CLASSICAL WATERFALL MODEL

The classical waterfall model is intuitively the most obvious way to develop software. Though

the classical waterfall model is elegant and intuitively obvious, it is not a practical model in the

sense that it cannot be used in actual software development projects. Thus, this model can be

considered to be a theoretical way of developing software. But all other life cycle models are

essentially derived from the classical waterfall model. So, in order to be able to appreciate other

life cycle models it is necessary to learn the classical waterfall model. Classical waterfall model

divides the life cycle into the following phases as shown in fig.2.1:

Fig 2.1: Classical Waterfall Model

Feasibility study - The main aim of feasibility study is to determine whether it would be

financially and technically feasible to develop the product.

 DEPT OF CSE & IT

 VSSUT, Burla

 At first project managers or team leaders try to have a rough understanding of what is

required to be done by visiting the client side. They study different input data to the

system and output data to be produced by the system. They study what kind of processing

is needed to be done on these data and they look at the various constraints on the

behavior of the system.

 After they have an overall understanding of the problem they investigate the different

solutions that are possible. Then they examine each of the solutions in terms of what kind

of resources required, what would be the cost of development and what would be the

development time for each solution.

 Based on this analysis they pick the best solution and determine whether the solution is

feasible financially and technically. They check whether the customer budget would meet

the cost of the product and whether they have sufficient technical expertise in the area of

development.

Requirements analysis and specification: - The aim of the requirements analysis and

specification phase is to understand the exact requirements of the customer and to document

them properly. This phase consists of two distinct activities, namely

 Requirements gathering and analysis

 Requirements specification

The goal of the requirements gathering activity is to collect all relevant information from the

customer regarding the product to be developed. This is done to clearly understand the customer

requirements so that incompleteness and inconsistencies are removed.

The requirements analysis activity is begun by collecting all relevant data regarding the product

to be developed from the users of the product and from the customer through interviews and

discussions. For example, to perform the requirements analysis of a business accounting software

required by an organization, the analyst might interview all the accountants of the organization to

ascertain their requirements. The data collected from such a group of users usually contain

several contradictions and ambiguities, since each user typically has only a partial and

incomplete view of the system. Therefore it is necessary to identify all ambiguities and

contradictions in the requirements and resolve them through further discussions with the

customer. After all ambiguities, inconsistencies, and incompleteness have been resolved and all

the requirements properly understood, the requirements specification activity can start. During

this activity, the user requirements are systematically organized into a Software Requirements

Specification (SRS) document. The customer requirements identified during the requirements

gathering and analysis activity are organized into a SRS document. The important components of

this document are functional requirements, the nonfunctional requirements, and the goals of

implementation.

 DEPT OF CSE & IT

 VSSUT, Burla

Design: - The goal of the design phase is to transform the requirements specified in the SRS

document into a structure that is suitable for implementation in some programming language. In

technical terms, during the design phase the software architecture is derived from the SRS

document. Two distinctly different approaches are available: the traditional design approach and

the object-oriented design approach.

 Traditional design approach -Traditional design consists of two different activities; first

a structured analysis of the requirements specification is carried out where the detailed

structure of the problem is examined. This is followed by a structured design activity.

During structured design, the results of structured analysis are transformed into the

software design.

 Object-oriented design approach -In this technique, various objects that occur in the

problem domain and the solution domain are first identified, and the different

relationships that exist among these objects are identified. The object structure is further

refined to obtain the detailed design.

Coding and unit testing:-The purpose of the coding phase (sometimes called the

implementation phase) of software development is to translate the software design into source

code. Each component of the design is implemented as a program module. The end-product of

this phase is a set of program modules that have been individually tested. During this phase, each

module is unit tested to determine the correct working of all the individual modules. It involves

testing each module in isolation as this is the most efficient way to debug the errors identified at

this stage.

Integration and system testing: -Integration of different modules is undertaken once they have

been coded and unit tested. During the integration and system testing phase, the modules are

integrated in a planned manner. The different modules making up a software product are almost

never integrated in one shot. Integration is normally carried out incrementally over a number of

steps. During each integration step, the partially integrated system is tested and a set of

previously planned modules are added to it. Finally, when all the modules have been successfully

integrated and tested, system testing is carried out. The goal of system testing is to ensure that

the developed system conforms to its requirements laid out in the SRS document. System testing

usually consists of three different kinds of testing activities:

 α – testing: It is the system testing performed by the development team.

 β –testing: It is the system testing performed by a friendly set of customers.

 Acceptance testing: It is the system testing performed by the customer himself after the

product delivery to determine whether to accept or reject the delivered product.

System testing is normally carried out in a planned manner according to the system test plan

document. The system test plan identifies all testing-related activities that must be performed,

 DEPT OF CSE & IT

 VSSUT, Burla

specifies the schedule of testing, and allocates resources. It also lists all the test cases and the

expected outputs for each test case.

Maintenance: -Maintenance of a typical software product requires much more than the effort

necessary to develop the product itself. Many studies carried out in the past confirm this and

indicate that the relative effort of development of a typical software product to its maintenance

effort is roughly in the 40:60 ratios. Maintenance involves performing any one or more of the

following three kinds of activities:

 Correcting errors that were not discovered during the product development phase. This is

called corrective maintenance.

 Improving the implementation of the system, and enhancing the functionalities of the

system according to the customer’s requirements. This is called perfective maintenance.

 Porting the software to work in a new environment. For example, porting may be

required to get the software to work on a new computer platform or with a new operating

system. This is called adaptive maintenance.

Shortcomings of the classical waterfall model

The classical waterfall model is an idealistic one since it assumes that no development error is

ever committed by the engineers during any of the life cycle phases. However, in practical

development environments, the engineers do commit a large number of errors in almost every

phase of the life cycle. The source of the defects can be many: oversight, wrong assumptions, use

of inappropriate technology, communication gap among the project engineers, etc. These defects

usually get detected much later in the life cycle. For example, a design defect might go unnoticed

till we reach the coding or testing phase. Once a defect is detected, the engineers need to go back

to the phase where the defect had occurred and redo some of the work done during that phase

and the subsequent phases to correct the defect and its effect on the later phases. Therefore, in

any practical software development work, it is not possible to strictly follow the classical

waterfall model.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 3

2. ITERATIVE WATERFALL MODEL

To overcome the major shortcomings of the classical waterfall model, we come up with the

iterative waterfall model.

Fig 3.1 : Iterative Waterfall Model

Here, we provide feedback paths for error correction as & when detected later in a phase.

Though errors are inevitable, but it is desirable to detect them in the same phase in which

they occur. If so, this can reduce the effort to correct the bug.

The advantage of this model is that there is a working model of the system at a very early

stage of development which makes it easier to find functional or design flaws. Finding issues

at an early stage of development enables to take corrective measures in a limited budget.

The disadvantage with this SDLC model is that it is applicable only to large and bulky

software development projects. This is because it is hard to break a small software system

into further small serviceable increments/modules.

 DEPT OF CSE & IT

 VSSUT, Burla

3. PRTOTYPING MODEL

Prototype

A prototype is a toy implementation of the system. A prototype usually exhibits limited

functional capabilities, low reliability, and inefficient performance compared to the actual

software. A prototype is usually built using several shortcuts. The shortcuts might involve

using inefficient, inaccurate, or dummy functions. The shortcut implementation of a function,

for example, may produce the desired results by using a table look-up instead of performing

the actual computations. A prototype usually turns out to be a very crude version of the

actual system.

Need for a prototype in software development

There are several uses of a prototype. An important purpose is to illustrate the input data

formats, messages, reports, and the interactive dialogues to the customer. This is a valuable

mechanism for gaining better understanding of the customer’s needs:

 how the screens might look like

 how the user interface would behave

 how the system would produce outputs

Another reason for developing a prototype is that it is impossible to get the perfect product

in the first attempt. Many researchers and engineers advocate that if you want to develop a

good product you must plan to throw away the first version. The experience gained in

developing the prototype can be used to develop the final product.

A prototyping model can be used when technical solutions are unclear to the development

team. A developed prototype can help engineers to critically examine the technical issues

associated with the product development. Often, major design decisions depend on issues

like the response time of a hardware controller, or the efficiency of a sorting algorithm, etc.

In such circumstances, a prototype may be the best or the only way to resolve the technical

issues.

A prototype of the actual product is preferred in situations such as:

• User requirements are not complete

• Technical issues are not clear

 DEPT OF CSE & IT

 VSSUT, Burla

Fig 3.2: Prototype Model

4. EVOLUTIONARY MODEL

It is also called successive versions model or incremental model. At first, a simple working

model is built. Subsequently it undergoes functional improvements & we keep on adding new

functions till the desired system is built.

Applications:

 Large projects where you can easily find modules for incremental implementation. Often

used when the customer wants to start using the core features rather than waiting for the

full software.

 Also used in object oriented software development because the system can be easily

portioned into units in terms of objects.

Advantages:

 User gets a chance to experiment partially developed system

 Reduce the error because the core modules get tested thoroughly.

Disadvantages:

 It is difficult to divide the problem into several versions that would be acceptable to the

customer which can be incrementally implemented & delivered.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig 3.3: Evolutionary Model

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 4

5. SPIRAL MODEL

The Spiral model of software development is shown in fig. 4.1. The diagrammatic representation

of this model appears like a spiral with many loops. The exact number of loops in the spiral is

not fixed. Each loop of the spiral represents a phase of the software process. For example, the

innermost loop might be concerned with feasibility study, the next loop with requirements

specification, the next one with design, and so on. Each phase in this model is split into four

sectors (or quadrants) as shown in fig. 4.1. The following activities are carried out during each

phase of a spiral model.

Fig 4.1: Spiral Model

First quadrant (Objective Setting)

• During the first quadrant, it is needed to identify the objectives of the phase.

• Examine the risks associated with these objectives.

 DEPT OF CSE & IT

 VSSUT, Burla

Second Quadrant (Risk Assessment and Reduction)

• A detailed analysis is carried out for each identified project risk.

• Steps are taken to reduce the risks. For example, if there is a risk that the

requirements are inappropriate, a prototype system may be developed.

Third Quadrant (Development and Validation)

• Develop and validate the next level of the product after resolving the identified

risks.

Fourth Quadrant (Review and Planning)

• Review the results achieved so far with the customer and plan the next iteration

around the spiral.

• Progressively more complete version of the software gets built with each iteration

around the spiral.

Circumstances to use spiral model

The spiral model is called a meta model since it encompasses all other life cycle models. Risk

handling is inherently built into this model. The spiral model is suitable for development of

technically challenging software products that are prone to several kinds of risks. However, this

model is much more complex than the other models – this is probably a factor deterring its use in

ordinary projects.

Comparison of different life-cycle models

The classical waterfall model can be considered as the basic model and all other life cycle

models as embellishments of this model. However, the classical waterfall model cannot be used

in practical development projects, since this model supports no mechanism to handle the errors

committed during any of the phases.

This problem is overcome in the iterative waterfall model. The iterative waterfall model is

probably the most widely used software development model evolved so far. This model is simple

to understand and use. However this model is suitable only for well-understood problems; it is

not suitable for very large projects and for projects that are subject to many risks.

The prototyping model is suitable for projects for which either the user requirements or the

underlying technical aspects are not well understood. This model is especially popular for

development of the user-interface part of the projects.

 DEPT OF CSE & IT

 VSSUT, Burla

The evolutionary approach is suitable for large problems which can be decomposed into a set of

modules for incremental development and delivery. This model is also widely used for object-

oriented development projects. Of course, this model can only be used if the incremental delivery

of the system is acceptable to the customer.

The spiral model is called a meta model since it encompasses all other life cycle models. Risk

handling is inherently built into this model. The spiral model is suitable for development of

technically challenging software products that are prone to several kinds of risks. However, this

model is much more complex than the other models – this is probably a factor deterring its use in

ordinary projects.

The different software life cycle models can be compared from the viewpoint of the customer.

Initially, customer confidence in the development team is usually high irrespective of the

development model followed. During the lengthy development process, customer confidence

normally drops off, as no working product is immediately visible. Developers answer customer

queries using technical slang, and delays are announced. This gives rise to customer resentment.

On the other hand, an evolutionary approach lets the customer experiment with a working

product much earlier than the monolithic approaches. Another important advantage of the

incremental model is that it reduces the customer’s trauma of getting used to an entirely new

system. The gradual introduction of the product via incremental phases provides time to the

customer to adjust to the new product. Also, from the customer’s financial viewpoint,

incremental development does not require a large upfront capital outlay. The customer can order

the incremental versions as and when he can afford them.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 5

REQUIREMENTS ANALYSIS AND SPECIFICATION

Before we start to develop our software, it becomes quite essential for us to understand and

document the exact requirement of the customer. Experienced members of the development team

carry out this job. They are called as system analysts.

The analyst starts requirements gathering and analysis activity by collecting all information

from the customer which could be used to develop the requirements of the system. He then

analyzes the collected information to obtain a clear and thorough understanding of the product to

be developed, with a view to remove all ambiguities and inconsistencies from the initial

customer perception of the problem. The following basic questions pertaining to the project

should be clearly understood by the analyst in order to obtain a good grasp of the problem:

• What is the problem?

• Why is it important to solve the problem?

• What are the possible solutions to the problem?

• What exactly are the data input to the system and what exactly are the data output by the

system?

• What are the likely complexities that might arise while solving the problem?

• If there are external software or hardware with which the developed software has to

interface, then what exactly would the data interchange formats with the external system

be?

After the analyst has understood the exact customer requirements, he proceeds to identify and

resolve the various requirements problems. The most important requirements problems that the

analyst has to identify and eliminate are the problems of anomalies, inconsistencies, and

incompleteness. When the analyst detects any inconsistencies, anomalies or incompleteness in

the gathered requirements, he resolves them by carrying out further discussions with the end-

users and the customers.

Parts of a SRS document

• The important parts of SRS document are:

 Functional requirements of the system

 Non-functional requirements of the system, and

 Goals of implementation

 DEPT OF CSE & IT

 VSSUT, Burla

Functional requirements:-

The functional requirements part discusses the functionalities required from the system. The

system is considered to perform a set of high-level functions {f
i
}. The functional view of the

system is shown in fig. 5.1. Each function f
i
of the system can be considered as a transformation

of a set of input data (ii) to the corresponding set of output data (o
i
). The user can get some

meaningful piece of work done using a high-level function.

Fig. 5.1: View of a system performing a set of functions

Nonfunctional requirements:-

Nonfunctional requirements deal with the characteristics of the system which cannot be

expressed as functions - such as the maintainability of the system, portability of the system,

usability of the system, etc.

Goals of implementation:-

The goals of implementation part documents some general suggestions regarding development.

These suggestions guide trade-off among design goals. The goals of implementation section

might document issues such as revisions to the system functionalities that may be required in the

future, new devices to be supported in the future, reusability issues, etc. These are the items

which the developers might keep in their mind during development so that the developed system

may meet some aspects that are not required immediately.

 DEPT OF CSE & IT

 VSSUT, Burla

Identifying functional requirements from a problem description

The high-level functional requirements often need to be identified either from an informal

problem description document or from a conceptual understanding of the problem. Each high-

level requirement characterizes a way of system usage by some user to perform some meaningful

piece of work. There can be many types of users of a system and their requirements from the

system may be very different. So, it is often useful to identify the different types of users who

might use the system and then try to identify the requirements from each user’s perspective.

Example: - Consider the case of the library system, where –

F1: Search Book function

Input: an author’s name

Output: details of the author’s books and the location of these books in the library

So the function Search Book (F1) takes the author's name and transforms it into book details.

Functional requirements actually describe a set of high-level requirements, where each high-level

requirement takes some data from the user and provides some data to the user as an output. Also

each high-level requirement might consist of several other functions.

Documenting functional requirements

For documenting the functional requirements, we need to specify the set of functionalities

supported by the system. A function can be specified by identifying the state at which the data is

to be input to the system, its input data domain, the output data domain, and the type of

processing to be carried on the input data to obtain the output data. Let us first try to document

the withdraw-cash function of an ATM (Automated Teller Machine) system. The withdraw-cash

is a high-level requirement. It has several sub-requirements corresponding to the different user

interactions. These different interaction sequences capture the different scenarios.

Example: - Withdraw Cash from ATM

R1: withdraw cash

Description: The withdraw cash function first determines the type of account that the user has

and the account number from which the user wishes to withdraw cash. It checks the balance to

determine whether the requested amount is available in the account. If enough balance is

available, it outputs the required cash; otherwise it generates an error message.

 DEPT OF CSE & IT

 VSSUT, Burla

R1.1 select withdraw amount option

Input: “withdraw amount” option

Output: user prompted to enter the account type

R1.2: select account type

Input: user option

Output: prompt to enter amount

R1.3: get required amount

Input: amount to be withdrawn in integer values greater than 100 and less than 10,000 in

multiples of 100.

Output: The requested cash and printed transaction statement.

Processing: the amount is debited from the user’s account if sufficient balance is

available, otherwise an error message displayed

Properties of a good SRS document

The important properties of a good SRS document are the following:

 Concise. The SRS document should be concise and at the same time unambiguous,

consistent, and complete. Verbose and irrelevant descriptions reduce readability and also

increase error possibilities.

 Structured. It should be well-structured. A well-structured document is easy to

understand and modify. In practice, the SRS document undergoes several revisions to

cope up with the customer requirements. Often, the customer requirements evolve over a

period of time. Therefore, in order to make the modifications to the SRS document easy,

it is important to make the document well-structured.

 Black-box view. It should only specify what the system should do and refrain from

stating how to do these. This means that the SRS document should specify the external

behavior of the system and not discuss the implementation issues. The SRS document

should view the system to be developed as black box, and should specify the externally

visible behavior of the system. For this reason, the SRS document is also called the

black-box specification of a system.

 DEPT OF CSE & IT

 VSSUT, Burla

 Conceptual integrity. It should show conceptual integrity so that the reader can easily

understand it.

 Response to undesired events. It should characterize acceptable responses to undesired

events. These are called system response to exceptional conditions.

 Verifiable. All requirements of the system as documented in the SRS document should

be verifiable. This means that it should be possible to determine whether or not

requirements have been met in an implementation.

Problems without a SRS document

The important problems that an organization would face if it does not develop a SRS document

are as follows:

 Without developing the SRS document, the system would not be implemented according

to customer needs.

 Software developers would not know whether what they are developing is what exactly

required by the customer.

 Without SRS document, it will be very much difficult for the maintenance engineers to

understand the functionality of the system.

 It will be very much difficult for user document writers to write the users’ manuals

properly without understanding the SRS document.

Problems with an unstructured specification

• It would be very much difficult to understand that document.

• It would be very much difficult to modify that document.

• Conceptual integrity in that document would not be shown.

• The SRS document might be unambiguous and inconsistent.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 6

DECISION TREE

A decision tree gives a graphic view of the processing logic involved in decision making and the

corresponding actions taken. The edges of a decision tree represent conditions and the leaf nodes

represent the actions to be performed depending on the outcome of testing the condition.

Example: -

Consider Library Membership Automation Software (LMS) where it should support the

following three options:

 New member

 Renewal

 Cancel membership

New member option-

Decision: When the 'new member' option is selected, the software asks details about the

member like the member's name, address, phone number etc.

Action: If proper information is entered then a membership record for the member is

created and a bill is printed for the annual membership charge plus the security deposit

payable.

Renewal option-

Decision: If the 'renewal' option is chosen, the LMS asks for the member's name and his

membership number to check whether he is a valid member or not.

Action: If the membership is valid then membership expiry date is updated and the

annual membership bill is printed, otherwise an error message is displayed.

Cancel membership option-

Decision: If the 'cancel membership' option is selected, then the software asks for

member's name and his membership number.

Action: The membership is cancelled, a cheque for the balance amount due to the

member is printed and finally the membership record is deleted from the database.

 DEPT OF CSE & IT

 VSSUT, Burla

The following tree (fig. 6.1) shows the graphical representation of the above example.

Fig 6.1: Decision Tree of LMS

DECISION TABLE

A decision table is used to represent the complex processing logic in a tabular or a matrix form.

The upper rows of the table specify the variables or conditions to be evaluated. The lower rows

of the table specify the actions to be taken when the corresponding conditions are satisfied. A

column in a table is called a rule. A rule implies that if a condition is true, then the

corresponding action is to be executed.

Example: -

Consider the previously discussed LMS example. The following decision table (fig. 6.2) shows

how to represent the LMS problem in a tabular form. Here the table is divided into two parts, the

upper part shows the conditions and the lower part shows what actions are taken. Each column

of the table is a rule.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 6.2: Decision table for LMS

From the above table you can easily understand that, if the valid selection condition is false then

the action taken for this condition is 'display error message'. Similarly, the actions taken for

other conditions can be inferred from the table.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 7

FORMAL SYSTEM SPECIFICATION

Formal Technique

A formal technique is a mathematical method to specify a hardware and/or software system,

verify whether a specification is realizable, verify that an implementation satisfies its

specification, prove properties of a system without necessarily running the system, etc. The

mathematical basis of a formal method is provided by the specification language.

Formal Specification Language

A formal specification language consists of two sets syn and sem, and a relation sat between

them. The set syn is called the syntactic domain, the set sem is called the semantic domain, and

the relation sat is called the satisfaction relation. For a given specification syn, and model of the

system sem, if sat (syn, sem), then syn is said to be the specification of sem, and sem is said to be

the specificand of syn.

Syntactic Domains

The syntactic domain of a formal specification language consists of an alphabet of symbols and

set of formation rules to construct well-formed formulas from the alphabet. The well-formed

formulas are used to specify a system.

Semantic Domains

Formal techniques can have considerably different semantic domains. Abstract data type

specification languages are used to specify algebras, theories, and programs. Programming

languages are used to specify functions from input to output values. Concurrent and distributed

system specification languages are used to specify state sequences, event sequences, state-

transition sequences, synchronization trees, partial orders, state machines, etc.

Satisfaction Relation

Given the model of a system, it is important to determine whether an element of the semantic

domain satisfies the specifications. This satisfaction is determined by using a homomorphism

known as semantic abstraction function. The semantic abstraction function maps the elements of

the semantic domain into equivalent classes. There can be different specifications describing

different aspects of a system model, possibly using different specification languages. Some of

these specifications describe the system’s behavior and the others describe the system’s

structure. Consequently, two broad classes of semantic abstraction functions are defined: those

that preserve a system’s behavior and those that preserve a system’s structure.

 DEPT OF CSE & IT

 VSSUT, Burla

Model-oriented vs. property-oriented approaches

Formal methods are usually classified into two broad categories – model – oriented and property

– oriented approaches. In a model-oriented style, one defines a system’s behavior directly by

constructing a model of the system in terms of mathematical structures such as tuples, relations,

functions, sets, sequences, etc.

In the property-oriented style, the system's behavior is defined indirectly by stating its properties,

usually in the form of a set of axioms that the system must satisfy.

Example:-

Let us consider a simple producer/consumer example. In a property-oriented style, it is

probably started by listing the properties of the system like: the consumer can start

consuming only after the producer has produced an item; the producer starts to produce

an item only after the consumer has consumed the last item, etc. A good example of a

producer-consumer problem is CPU-Printer coordination. After processing of data, CPU

outputs characters to the buffer for printing. Printer, on the other hand, reads characters

from the buffer and prints them. The CPU is constrained by the capacity of the buffer,

whereas the printer is constrained by an empty buffer. Examples of property-oriented

specification styles are axiomatic specification and algebraic specification.

In a model-oriented approach, we start by defining the basic operations, p (produce) and c

(consume). Then we can state that S1 + p → S, S + c → S1. Thus the model-oriented approaches

essentially specify a program by writing another, presumably simpler program. Examples of

popular model-oriented specification techniques are Z, CSP, CCS, etc.

Model-oriented approaches are more suited to use in later phases of life cycle because here even

minor changes to a specification may lead to drastic changes to the entire specification. They do

not support logical conjunctions (AND) and disjunctions (OR).

Property-oriented approaches are suitable for requirements specification because they can be

easily changed. They specify a system as a conjunction of axioms and you can easily replace one

axiom with another one.

Operational Semantics

Informally, the operational semantics of a formal method is the way computations are

represented. There are different types of operational semantics according to what is meant by a

single run of the system and how the runs are grouped together to describe the behavior of the

system. Some commonly used operational semantics are as follows:

Linear Semantics:-

In this approach, a run of a system is described by a sequence (possibly infinite) of events or

states. The concurrent activities of the system are represented by non-deterministic interleavings

of the automatic actions. For example, a concurrent activity a║b is represented by the set of

 DEPT OF CSE & IT

 VSSUT, Burla

sequential activities a;b and b;a. This is simple but rather unnatural representation of

concurrency. The behavior of a system in this model consists of the set of all its runs. To make

this model realistic, usually justice and fairness restrictions are imposed on computations to

exclude the unwanted interleavings.

Branching Semantics:-

In this approach, the behavior of a system is represented by a directed graph. The nodes of the

graph represent the possible states in the evolution of a system. The descendants of each node of

the graph represent the states which can be generated by any of the atomic actions enabled at that

state. Although this semantic model distinguishes the branching points in a computation, still it

represents concurrency by interleaving.

Maximally parallel semantics:-

In this approach, all the concurrent actions enabled at any state are assumed to be taken together.

This is again not a natural model of concurrency since it implicitly assumes the availability of all

the required computational resources.

Partial order semantics:-

Under this view, the semantics ascribed to a system is a structure of states satisfying a partial

order relation among the states (events). The partial order represents a precedence ordering

among events, and constraints some events to occur only after some other events have occurred;

while the occurrence of other events (called concurrent events) is considered to be incomparable.

This fact identifies concurrency as a phenomenon not translatable to any interleaved

representation.

Formal methods possess several positive features, some of which are discussed below.

 Formal specifications encourage rigor. Often, the very process of construction of a

rigorous specification is more important than the formal specification itself. The

construction of a rigorous specification clarifies several aspects of system behavior

that are not obvious in an informal specification.

 Formal methods usually have a well-founded mathematical basis. Thus, formal

specifications are not only more precise, but also mathematically sound and can be

used to reason about the properties of a specification and to rigorously prove that an

implementation satisfies its specifications.

 Formal methods have well-defined semantics. Therefore, ambiguity in specifications

is automatically avoided when one formally specifies a system.

 DEPT OF CSE & IT

 VSSUT, Burla

 The mathematical basis of the formal methods facilitates automating the analysis of

specifications. For example, a tableau-based technique has been used to automatically

check the consistency of specifications. Also, automatic theorem proving techniques

can be used to verify that an implementation satisfies its specifications. The

possibility of automatic verification is one of the most important advantages of formal

methods.

 Formal specifications can be executed to obtain immediate feedback on the features

of the specified system. This concept of executable specifications is related to rapid

prototyping. Informally, a prototype is a “toy” working model of a system that can

provide immediate feedback on the behavior of the specified system, and is especially

useful in checking the completeness of specifications.

Limitations of formal requirements specification

It is clear that formal methods provide mathematically sound frameworks within large, complex

systems can be specified, developed and verified in a systematic rather than in an ad hoc manner.

However, formal methods suffer from several shortcomings, some of which are the following:

 Formal methods are difficult to learn and use.

 The basic incompleteness results of first-order logic suggest that it is impossible to

check absolute correctness of systems using theorem proving techniques.

 Formal techniques are not able to handle complex problems. This shortcoming results

from the fact that, even moderately complicated problems blow up the complexity of

formal specification and their analysis. Also, a large unstructured set of mathematical

formulas is difficult to comprehend.

Axiomatic Specification

In axiomatic specification of a system, first-order logic is used to write the pre and post-

conditions to specify the operations of the system in the form of axioms. The pre-conditions

basically capture the conditions that must be satisfied before an operation can successfully be

invoked. In essence, the pre-conditions capture the requirements on the input parameters of a

function. The post-conditions are the conditions that must be satisfied when a function completes

execution for the function to be considered to have executed successfully. Thus, the post-

conditions are essentially constraints on the results produced for the function execution to be

considered successful.

 DEPT OF CSE & IT

 VSSUT, Burla

The following are the sequence of steps that can be followed to systematically develop the

axiomatic specifications of a function:

 Establish the range of input values over which the function should behave correctly.

Also find out other constraints on the input parameters and write it in the form of a

predicate.

 Specify a predicate defining the conditions which must hold on the output of the

function if it behaved properly.

 Establish the changes made to the function’s input parameters after execution of the

function. Pure mathematical functions do not change their input and therefore this

type of assertion is not necessary for pure functions.

 Combine all of the above into pre and post conditions of the function.

Example1: -

Specify the pre- and post-conditions of a function that takes a real number as argument

and returns half the input value if the input is less than or equal to 100, or else returns

double the value.

f (x : real) : real

pre : x ∈ R

post : {(x≤100) ∧ (f(x) = x/2)} ∨ {(x>100) ∧ (f(x) = 2∗x)}

Example2: -

Axiomatically specify a function named search which takes an integer array and an

integer key value as its arguments and returns the index in the array where the key value

is present.

search(X : IntArray, key : Integer) : Integer

pre : ∃ i ∈ [Xfirst….Xlast], X[i] = key

post : {(X′[search(X, key)] = key) ∧ (X = X′)}

Here the convention followed is: If a function changes any of its input parameters and if

that parameter is named X, and then it is referred to as X′ after the function completes

execution faster.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 8

SOFTWARE DESIGN
Software design is a process to transform user requirements into some suitable form, which

helps the programmer in software coding and implementation.

For assessing user requirements, an SRS (Software Requirement Specification) document is

created whereas for coding and implementation, there is a need of more specific and detailed

requirements in software terms. The output of this process can directly be used into

implementation in programming languages.

Software design is the first step in SDLC (Software Design Life Cycle), which moves the

concentration from problem domain to solution domain. It tries to specify how to fulfill the

requirements mentioned in SRS.

Software Design Levels

Software design yields three levels of results:

 Architectural Design - The architectural design is the highest abstract version of the

system. It identifies the software as a system with many components interacting with

each other. At this level, the designers get the idea of proposed solution domain.

 High-level Design- The high-level design breaks the ‘single entity-multiple component’

concept of architectural design into less-abstracted view of sub-systems and modules and

depicts their interaction with each other. High-level design focuses on how the system

along with all of its components can be implemented in forms of modules. It recognizes

modular structure of each sub-system and their relation and interaction among each other.

 Detailed Design- Detailed design deals with the implementation part of what is seen as a

system and its sub-systems in the previous two designs. It is more detailed towards

modules and their implementations. It defines logical structure of each module and their

interfaces to communicate with other modules.

Modularization

Modularization is a technique to divide a software system into multiple discrete and

independent modules, which are expected to be capable of carrying out task(s) independently.

These modules may work as basic constructs for the entire software. Designers tend to design

modules such that they can be executed and/or compiled separately and independently.

Modular design unintentionally follows the rules of ‘divide and conquer’ problem-solving

strategy this is because there are many other benefits attached with the modular design of a

software.

 DEPT OF CSE & IT

 VSSUT, Burla

Advantage of modularization:

 Smaller components are easier to maintain

 Program can be divided based on functional aspects

 Desired level of abstraction ca n be brought in the program

 Components with high cohesion can be re-used again.

 Concurrent execution can be made possible

 Desired from security aspect

Concurrency

Back in time, all softwares were meant to be executed sequentially. By sequential execution we

mean that the coded instruction will be executed one after another implying only one portion of

program being activated at any given time. Say, a software has multiple modules, then only one

of all the modules can be found active at any time of execution.

In software design, concurrency is implemented by splitting the software into multiple

independent units of execution, like modules and executing them in parallel. In other words,

concurrency provides capability to the software to execute more than one part of code in

parallel to each other.

It is necessary for the programmers and designers to recognize those modules, which can be

made parallel execution.

Example

The spell check feature in word processor is a module of software, which runs alongside the

word processor itself.

Coupling and Cohesion

When a software program is modularized, its tasks are divided into several modules based on

some characteristics. As we know, modules are set of instructions put together in order to

achieve some tasks. They are though, considered as single entity but may refer to each other to

work together. There are measures by which the quality of a design of modules and their

interaction among them can be measured. These measures are called coupling and cohesion.

Cohesion

Cohesion is a measure that defines the degree of intra-dependability within elements of a

module. The greater the cohesion, the better is the program design.

 DEPT OF CSE & IT

 VSSUT, Burla

There are seven types of cohesion, namely –

 Co-incidental cohesion - It is unplanned and random cohesion, which might be the result

of breaking the program into smaller modules for the sake of modularization. Because it

is unplanned, it may serve confusion to the programmers and is generally not-accepted.

 Logical cohesion - When logically categorized elements are put together into a module,

it is called logical cohesion.

 Temporal Cohesion - When elements of module are organized such that they are

processed at a similar point in time, it is called temporal cohesion.

 Procedural cohesion - When elements of module are grouped together, which are

executed sequentially in order to perform a task, it is called procedural cohesion.

 Communicational cohesion - When elements of module are grouped together, which are

executed sequentially and work on same data (information), it is called communicational

cohesion.

 Sequential cohesion - When elements of module are grouped because the output of one

element serves as input to another and so on, it is called sequential cohesion.

 Functional cohesion - It is considered to be the highest degree of cohesion, and it is

highly expected. Elements of module in functional cohesion are grouped because they all

contribute to a single well-defined function. It can also be reused.

 Coupling

Coupling is a measure that defines the level of inter-dependability among modules of a

program. It tells at what level the modules interfere and interact with each other. The lower the

coupling, the better the program.

There are five levels of coupling, namely -

 Content coupling - When a module can directly access or modify or refer to the content

of another module, it is called content level coupling.

 Common coupling- When multiple modules have read and write access to some global

data, it is called common or global coupling.

 Control coupling- Two modules are called control-coupled if one of them decides the

function of the other module or changes its flow of execution.

 Stamp coupling- When multiple modules share common data structure and work on

different part of it, it is called stamp coupling.

 Data coupling- Data coupling is when two modules interact with each other by means of

passing data (as parameter). If a module passes data structure as parameter, then the

receiving module should use all its components.

Ideally, no coupling is considered to be the best.

 DEPT OF CSE & IT

 VSSUT, Burla

Design Verification

The output of software design process is design documentation, pseudo codes, detailed logic

diagrams, process diagrams, and detailed description of all functional or non-functional

requirements.

The next phase, which is the implementation of software, depends on all outputs mentioned

above.

It is then becomes necessary to verify the output before proceeding to the next phase. The early

any mistake is detected, the better it is or it might not be detected until testing of the product. If

the outputs of design phase are in formal notation form, then their associated tools for

verification should be used otherwise a thorough design review can be used for verification and

validation.

By structured verification approach, reviewers can detect defects that might be caused by

overlooking some conditions. A good design review is important for good software design,

accuracy and quality.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 9

SOFTWARE DESIGN STRATEGIES

Software design is a process to conceptualize the software requirements into software

implementation. Software design takes the user requirements as challenges and tries to find

optimum solution. While the software is being conceptualized, a plan is chalked out to find the

best possible design for implementing the intended solution.

There are multiple variants of software design. Let us study them briefly:

Software design is a process to conceptualize the software requirements into software

implementation. Software design takes the user requirements as challenges and tries to find

optimum solution. While the software is being conceptualized, a plan is chalked out to find the

best possible design for implementing the intended solution.

There are multiple variants of software design. Let us study them briefly:

Structured Design

Structured design is a conceptualization of problem into several well-organized elements of

solution. It is basically concerned with the solution design. Benefit of structured design is, it

gives better understanding of how the problem is being solved. Structured design also makes it

simpler for designer to concentrate on the problem more accurately.

Structured design is mostly based on ‘divide and conquer’ strategy where a problem is broken

into several small problems and each small problem is individually solved until the whole

problem is solved.

The small pieces of problem are solved by means of solution modules. Structured design

emphasis that these modules be well organized in order to achieve precise solution.

These modules are arranged in hierarchy. They communicate with each other. A good structured

design always follows some rules for communication among multiple modules, namely -

Cohesion - grouping of all functionally related elements.

Coupling - communication between different modules.

A good structured design has high cohesion and low coupling arrangements.

 DEPT OF CSE & IT

 VSSUT, Burla

Function Oriented Design

In function-oriented design, the system is comprised of many smaller sub-systems known as

functions. These functions are capable of performing significant task in the system. The system

is considered as top view of all functions.

Function oriented design inherits some properties of structured design where divide and conquer

methodology is used.

This design mechanism divides the whole system into smaller functions, which provides means

of abstraction by concealing the information and their operation. These functional modules can

share information among themselves by means of information passing and using information

available globally.

Another characteristic of functions is that when a program calls a function, the function changes

the state of the program, which sometimes is not acceptable by other modules. Function oriented

design works well where the system state does not matter and program/functions work on input

rather than on a state.

Design Process

 The whole system is seen as how data flows in the system by means of data flow

diagram.

 DFD depicts how functions change the data and state of entire system.

 The entire system is logically broken down into smaller units known as functions on the

basis of their operation in the system.

 Each function is then described at large.

Object Oriented Design

Object oriented design works around the entities and their characteristics instead of functions

involved in the software system. This design strategy focuses on entities and its characteristics.

The whole concept of software solution revolves around the engaged entities.

Let us see the important concepts of Object Oriented Design:

 Objects - All entities involved in the solution design are known as objects. For example,

person, banks, company and customers are treated as objects. Every entity has some

attributes associated to it and has some methods to perform on the attributes.

 Classes - A class is a generalized description of an object. An object is an instance of a

class. Class defines all the attributes, which an object can have and methods, which

defines the functionality of the object.

 DEPT OF CSE & IT

 VSSUT, Burla

In the solution design, attributes are stored as variables and functionalities are defined

by means of methods or procedures.

 Encapsulation - In OOD, the attributes (data variables) and methods (operation on the

data) are bundled together is called encapsulation. Encapsulation not only bundles

important information of an object together, but also restricts access of the data and

methods from the outside world. This is called information hiding.

 Inheritance - OOD allows similar classes to stack up in hierarchical manner where the

lower or sub-classes can import, implement and re-use allowed variables and methods

from their immediate super classes. This property of OOD is known as inheritance. This

makes it easier to define specific class and to create generalized classes from specific

ones.

 Polymorphism - OOD languages provide a mechanism where methods performing

similar tasks but vary in arguments, can be assigned same name. This is called

polymorphism, which allows a single interface performing tasks for different types.

Depending upon how the function is invoked, respective portion of the code gets

executed.

Design Process

Software design process can be perceived as series of well-defined steps. Though it varies

according to design approach (function oriented or object oriented, yet It may have the

following steps involved:

 A solution design is created from requirement or previous used system and/or system

sequence diagram.

 Objects are identified and grouped into classes on behalf of similarity in attribute

characteristics.

 Class hierarchy and relation among them are defined.

 Application framework is defined.

Software Design Approaches

There are two generic approaches for software designing:

Top down Design

We know that a system is composed of more than one sub-systems and it contains a number of

components. Further, these sub-systems and components may have their one set of sub-system

and components and creates hierarchical structure in the system.

Top-down design takes the whole software system as one entity and then decomposes it to

achieve more than one sub-system or component based on some characteristics. Each sub-

 DEPT OF CSE & IT

 VSSUT, Burla

system or component is then treated as a system and decomposed further. This process keeps on

running until the lowest level of system in the top-down hierarchy is achieved.

Top-down design starts with a generalized model of system and keeps on defining the more

specific part of it. When all components are composed the whole system comes into existence.

Top-down design is more suitable when the software solution needs to be designed from scratch

and specific details are unknown.

Bottom-up Design

The bottom up design model starts with most specific and basic components. It proceeds with

composing higher level of components by using basic or lower level components. It keeps

creating higher level components until the desired system is not evolved as one single

component. With each higher level, the amount of abstraction is increased.

Bottom-up strategy is more suitable when a system needs to be created from some existing

system, where the basic primitives can be used in the newer system.

Both, top-down and bottom-up approaches are not practical individually. Instead, a good

combination of both is used.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 10

SOFTWARE ANALYSIS & DESIGN TOOLS

Software analysis and design includes all activities, which help the transformation of

requirement specification into implementation. Requirement specifications specify all functional

and non-functional expectations from the software. These requirement specifications come in

the shape of human readable and understandable documents, to which a computer has nothing to

do.

Software analysis and design is the intermediate stage, which helps human-readable

requirements to be transformed into actual code.

Let us see few analysis and design tools used by software designers:

Data Flow Diagram

Data flow diagram is a graphical representation of data flow in an information system. It is

capable of depicting incoming data flow, outgoing data flow and stored data. The DFD does not

mention anything about how data flows through the system.

There is a prominent difference between DFD and Flowchart. The flowchart depicts flow of

control in program modules. DFDs depict flow of data in the system at various levels. DFD does

not contain any control or branch elements.

Types of DFD

Data Flow Diagrams are either Logical or Physical.

 Logical DFD - This type of DFD concentrates on the system process and flow of data in

the system. For example in a Banking software system, how data is moved between

different entities.

 Physical DFD - This type of DFD shows how the data flow is actually implemented in

the system. It is more specific and close to the implementation.

 DEPT OF CSE & IT

 VSSUT, Burla

DFD Components

DFD can represent Source, destination, storage and flow of data using the following set of

components -

Fig 10.1: DFD Components

 Entities - Entities are source and destination of information data. Entities are represented

by rectangles with their respective names.

 Process - Activities and action taken on the data are represented by Circle or Round-

edged rectangles.

 Data Storage - There are two variants of data storage - it can either be represented as a

rectangle with absence of both smaller sides or as an open-sided rectangle with only one

side missing.

 Data Flow - Movement of data is shown by pointed arrows. Data movement is shown

from the base of arrow as its source towards head of the arrow as destination.

Importance of DFDs in a good software design

The main reason why the DFD technique is so popular is probably because of the fact that DFD

is a very simple formalism – it is simple to understand and use. Starting with a set of high-level

functions that a system performs, a DFD model hierarchically represents various sub-functions.

In fact, any hierarchical model is simple to understand. Human mind is such that it can easily

understand any hierarchical model of a system – because in a hierarchical model, starting with a

very simple and abstract model of a system, different details of the system are slowly introduced

through different hierarchies. The data flow diagramming technique also follows a very simple

set of intuitive concepts and rules. DFD is an elegant modeling technique that turns out to be

useful not only to represent the results of structured analysis of a software problem, but also for

several other applications such as showing the flow of documents or items in an organization.

 DEPT OF CSE & IT

 VSSUT, Burla

Data Dictionary

A data dictionary lists all data items appearing in the DFD model of a system. The data items

listed include all data flows and the contents of all data stores appearing on the DFDs in the DFD

model of a system. A data dictionary lists the purpose of all data items and the definition of all

composite data items in terms of their component data items. For example, a data dictionary

entry may represent that the data grossPay consists of the components regularPay and

overtimePay.

grossPay = regularPay + overtimePay

For the smallest units of data items, the data dictionary lists their name and their type. Composite

data items can be defined in terms of primitive data items using the following data definition

operators:

+: denotes composition of two data items, e.g. a+b represents data a and b.

[,,]: represents selection, i.e. any one of the data items listed in the brackets can occur.

For example, [a,b] represents either a occurs or b occurs.

(): the contents inside the bracket represent optional data which may or may not appear.

e.g. a+(b) represents either a occurs or a+b occurs.

{}: represents iterative data definition, e.g. {name}5 represents five name data. {name}*

represents zero or more instances of name data.

=: represents equivalence, e.g. a=b+c means that a represents b and c.

/* */: Anything appearing within /* and */ is considered as a comment.

Example 1: Tic-Tac-Toe Computer Game

Tic-tac-toe is a computer game in which a human player and the computer make

alternative moves on a 3×3 square. A move consists of marking previously

unmarked square. The player who first places three consecutive marks along a

straight line on the square (i.e. along a row, column, or diagonal) wins the game.

As soon as either the human player or the computer wins, a message

congratulating the winner should be displayed. If neither player manages to get

three consecutive marks along a straight line, but all the squares on the board are

filled up, then the game is drawn. The computer always tries to win a game.

 DEPT OF CSE & IT

 VSSUT, Burla

(a)

Fig 10.2 (a) Level 0 (b) Level 1 DFD for Tic-Tac-Toe game

 DEPT OF CSE & IT

 VSSUT, Burla

It may be recalled that the DFD model of a system typically consists of several DFDs: level 0,

level 1, etc. However, a single data dictionary should capture all the data appearing in all the

DFDs constituting the model. Figure 10.2 represents the level 0 and level 1 DFDs for the tic-tac-

toe game. The data dictionary for the model is given below.

Data Dictionary for the DFD model in Example 1

move: integer /*number between 1 and 9 */

display: game+result

game: board

board: {integer}9

result: [“computer won”, “human won” “draw”]

Importance of Data Dictionary

A data dictionary plays a very important role in any software development process because of

the following reasons:

• A data dictionary provides a standard terminology for all relevant data for use by the

engineers working in a project. A consistent vocabulary for data items is very important,

since in large projects different engineers of the project have a tendency to use different

terms to refer to the same data, which unnecessary causes confusion.

• The data dictionary provides the analyst with a means to determine the definition of

different data structures in terms of their component elements.

Balancing a DFD

The data that flow into or out of a bubble must match the data flow at the next level of DFD. This

is known as balancing a DFD. The concept of balancing a DFD has been illustrated in fig. 10.3.

In the level 1 of the DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item d2

flows into the bubble 0.1. In the next level, bubble 0.1 is decomposed. The decomposition is

balanced, as d1 and d3 flow out of the level 2 diagram and d2 flows in.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 10.3: An example showing balanced decomposition

 DEPT OF CSE & IT

 VSSUT, Burla

Context Diagram

The context diagram is the most abstract data flow representation of a system. It represents the

entire system as a single bubble. This bubble is labeled according to the main function of the

system. The various external entities with which the system interacts and the data flow occurring

between the system and the external entities are also represented. The data input to the system

and the data output from the system are represented as incoming and outgoing arrows. These

data flow arrows should be annotated with the corresponding data names. The name ‘context

diagram’ is well justified because it represents the context in which the system is to exist, i.e. the

external entities who would interact with the system and the specific data items they would be

supplying the system and the data items they would be receiving from the system. The context

diagram is also called as the level 0 DFD.

To develop the context diagram of the system, it is required to analyze the SRS document to

identify the different types of users who would be using the system and the kinds of data they

would be inputting to the system and the data they would be receiving the system. Here, the term

“users of the system” also includes the external systems which supply data to or receive data

from the system.

The bubble in the context diagram is annotated with the name of the software system being

developed (usually a noun). This is in contrast with the bubbles in all other levels which are

annotated with verbs. This is expected since the purpose of the context diagram is to capture the

context of the system rather than its functionality.

Example 1: RMS Calculating Software.

A software system called RMS calculating software would read three integral numbers

from the user in the range of -1000 and +1000 and then determine the root mean square

(rms) of the three input numbers and display it. In this example, the context diagram (fig.

10.4) is simple to draw. The system accepts three integers from the user and returns the

result to him.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 10.4: Context Diagram

To develop the data flow model of a system, first the most abstract representation of the problem

is to be worked out. The most abstract representation of the problem is also called the context

diagram. After, developing the context diagram, the higher-level DFDs have to be developed.

Context Diagram: - This has been described earlier.

Level 1 DFD: - To develop the level 1 DFD, examine the high-level functional requirements. If

there are between 3 to 7 high-level functional requirements, then these can be directly

represented as bubbles in the level 1 DFD. We can then examine the input data to these functions

and the data output by these functions and represent them appropriately in the diagram.

If a system has more than 7 high-level functional requirements, then some of the related

requirements have to be combined and represented in the form of a bubble in the level 1 DFD.

Such a bubble can be split in the lower DFD levels. If a system has less than three high-level

functional requirements, then some of them need to be split into their sub-functions so that we

have roughly about 5 to 7 bubbles on the diagram.

Decomposition:-

Each bubble in the DFD represents a function performed by the system. The bubbles are

decomposed into sub-functions at the successive levels of the DFD. Decomposition of a bubble

is also known as factoring or exploding a bubble. Each bubble at any level of DFD is usually

decomposed to anything between 3 to 7 bubbles. Too few bubbles at any level make that level

 DEPT OF CSE & IT

 VSSUT, Burla

superfluous. For example, if a bubble is decomposed to just one bubble or two bubbles, then this

decomposition becomes redundant. Also, too many bubbles, i.e. more than 7 bubbles at any level

of a DFD makes the DFD model hard to understand. Decomposition of a bubble should be

carried on until a level is reached at which the function of the bubble can be described using a

simple algorithm.

Numbering of Bubbles:-

It is necessary to number the different bubbles occurring in the DFD. These numbers help in

uniquely identifying any bubble in the DFD by its bubble number. The bubble at the context

level is usually assigned the number 0 to indicate that it is the 0 level DFD. Bubbles at level 1 are

numbered, 0.1, 0.2, 0.3, etc, etc. When a bubble numbered x is decomposed, its children bubble

are numbered x.1, x.2, x.3, etc. In this numbering scheme, by looking at the number of a bubble

we can unambiguously determine its level, its ancestors, and its successors.

Example:-

A supermarket needs to develop the following software to encourage regular customers.

For this, the customer needs to supply his/her residence address, telephone number, and

the driving license number. Each customer who registers for this scheme is assigned a

unique customer number (CN) by the computer. A customer can present his CN to the

check out staff when he makes any purchase. In this case, the value of his purchase is

credited against his CN. At the end of each year, the supermarket intends to award

surprise gifts to 10 customers who make the highest total purchase over the year. Also, it

intends to award a 22 caret gold coin to every customer whose purchase exceeded

Rs.10,000. The entries against the CN are the reset on the day of every year after the prize

winners’ lists are generated.

The context diagram for this problem is shown in fig. 10.5, the level 1 DFD in fig. 10.6, and the

level 2 DFD in fig. 10.7.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 10.5: Context diagram for supermarket problem

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 10.6: Level 1 diagram for supermarket problem

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 10.7: Level 2 diagram for supermarket problem

Example: Trading-House Automation System (TAS).

The trading house wants us to develop a computerized system that would automate

various book-keeping activities associated with its business. The following are the

salient features of the system to be developed:

• The trading house has a set of regular customers. The customers place orders with it

for various kinds of commodities. The trading house maintains the names and

addresses of its regular customers. Each of these regular customers should be

assigned a unique customer identification number (CIN) by the computer. The

customers quote their CIN on every order they place.

• Once order is placed, as per current practice, the accounts department of the trading

house first checks the credit-worthiness of the customer. The credit-worthiness of the

customer is determined by analyzing the history of his payments to different bills sent

to him in the past. After automation, this task has to be done by the computer.

 DEPT OF CSE & IT

 VSSUT, Burla

• If the customer is not credit-worthy, his orders are not processed any further and an

appropriate order rejection message is generated for the customer.

• If a customer is credit-worthy, the items that have been ordered are checked against a

list of items that the trading house deals with. The items in the order which the

trading house does not deal with, are not processed any further and an appropriate

apology message for the customer for these items is generated.

• The items in the customer’s order that the trading house deals with are checked for

availability in the inventory. If the items are available in the inventory in the desired

quantity, then

 A bill with the forwarding address of the customer is printed.

 A material issue slip is printed. The customer can produce this material

issue slip at the store house and take delivery of the items.

 Inventory data is adjusted to reflect the sale to the customer.

If any of the ordered items are not available in the inventory in sufficient quantity to

satisfy the order, then these out-of-stock items along with the quantity ordered by the

customer and the CIN are stored in a “pending-order” file for the further processing to

be carried out when the purchase department issues the “generate indent” command.

• The purchase department should be allowed to periodically issue commands to

generate indents. When a command to generate indents is issued, the system should

examine the “pending-order” file to determine the orders that are pending and

determine the total quantity required for each of the items. It should find out the

addresses of the vendors who supply these items by examining a file containing

vendor details and then should print out indents to these vendors.

• The system should also answer managerial queries regarding the statistics of different

items sold over any given period of time and the corresponding quantity sold and the

price realized.

The context diagram for the trading house automation problem is shown in fig. 10.8, and

the level 1 DFD in fig. 10.9.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 10.8: Context diagram for TAS

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 10.9: Level 1 DFD for TAS

Data Dictionary for the DFD Model of TAS:

response: [bill + material-issue-slip, reject-message]

query: period /*query from manager regarding sales statistics */

period: [date + date, month, year, day]

date: year + month + day

year: integer

month: integer

day: integer

order: customer-id + {items + quantity}* + order#

accepted-order: order /* ordered items available in inventory */

 DEPT OF CSE & IT

 VSSUT, Burla

reject-message: order + message /*rejection message*/

pending-orders: customer-id + {items + quantity}*

customer-address: name + house# + street# + city + pin

name: string

house#: string

street#: string

city: string

pin: integer

customer-id: integer

customer-file: {customer-address}*

bill: {item + quantity + price}* + total-amount + customer-address + order#

material-issue-slip: message + item + quantity + customer-address

message: string

statistics: {item + quantity + price}*

sales-statistics: {statistics}* + date

quantity: integer

order#: integer /* unique order number generated by the program */

price: integer

total-amount: integer

generate-indent: command

indent: {indent + quantity}* + vendor-address

indents: {indent}*

vendor-address: customer-address

vendor-list: {vendor-address}*

item-file: {item}*

item: string

indent-request: command

 DEPT OF CSE & IT

 VSSUT, Burla

Commonly made errors while constructing a DFD model

Although DFDs are simple to understand and draw, students and practitioners alike encounter

similar types of problems while modelling software problems using DFDs. While learning from

experience is powerful thing, it is an expensive pedagogical technique in the business world. It is

therefore helpful to understand the different types of mistakes that users usually make while

constructing the DFD model of systems.

 Many beginners commit the mistake of drawing more than one bubble in the context

diagram. A context diagram should depict the system as a single bubble.

 Many beginners have external entities appearing at all levels of DFDs. All external

entities interacting with the system should be represented only in the context diagram.

The external entities should not appear at other levels of the DFD.

 It is a common oversight to have either too less or too many bubbles in a DFD. Only 3 to

7 bubbles per diagram should be allowed, i.e. each bubble should be decomposed to

between 3 and 7 bubbles.

 Many beginners leave different levels of DFD unbalanced.

 A common mistake committed by many beginners while developing a DFD model is

attempting to represent control information in a DFD. It is important to realize that a

DFD is the data flow representation of a system, and it does not represent control

information. For an example mistake of this kind:

Consider the following example. A book can be searched in the library catalog by

inputting its name. If the book is available in the library, then the details of the

book are displayed. If the book is not listed in the catalog, then an error message

is generated. While generating the DFD model for this simple problem, many

beginners commit the mistake of drawing an arrow (as shown in fig. 10.10) to

indicate the error function is invoked after the search book. But, this is control

information and should not be shown on the DFD.

Fig. 10.10: Showing control information on a DFD - incorrect

 DEPT OF CSE & IT

 VSSUT, Burla

 Another error is trying to represent when or in what order different functions (processes)

are invoked and not representing the conditions under which different functions are

invoked.

 If a bubble A invokes either the bubble B or the bubble C depending upon some

conditions, we need only to represent the data that flows between bubbles A and B or

bubbles A and C and not the conditions depending on which the two modules are

invoked.

 A data store should be connected only to bubbles through data arrows. A data store

cannot be connected to another data store or to an external entity.

 All the functionalities of the system must be captured by the DFD model. No function of

the system specified in its SRS document should be overlooked.

 Only those functions of the system specified in the SRS document should be represented,

i.e. the designer should not assume functionality of the system not specified by the SRS

document and then try to represent them in the DFD.

 Improper or unsatisfactory data dictionary.

 The data and function names must be intuitive. Some students and even practicing

engineers use symbolic data names such a, b, c, etc. Such names hinder understanding the

DFD model.

Shortcomings of a DFD model

DFD models suffer from several shortcomings. The important shortcomings of the DFD models

are the following:

 DFDs leave ample scope to be imprecise - In the DFD model, the function performed by

a bubble is judged from its label. However, a short label may not capture the entire

functionality of a bubble. For example, a bubble named find-book-position has only

intuitive meaning and does not specify several things, e.g. what happens when some input

information are missing or are incorrect. Further, the find-book-position bubble may not

convey anything regarding what happens when the required book is missing.

 Control aspects are not defined by a DFD- For instance; the order in which inputs are

consumed and outputs are produced by a bubble is not specified. A DFD model does not

specify the order in which the different bubbles are executed. Representation of such

aspects is very important for modeling real-time systems.

 The method of carrying out decomposition to arrive at the successive levels and the

ultimate level to which decomposition is carried out are highly subjective and depend on

the choice and judgment of the analyst. Due to this reason, even for the same problem,

several alternative DFD representations are possible. Further, many times it is not

possible to say which DFD representation is superior or preferable to another one.

 DEPT OF CSE & IT

 VSSUT, Burla

 The data flow diagramming technique does not provide any specific guidance as to how

exactly to decompose a given function into its sub-functions and we have to use

subjective judgment to carry out decomposition.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 11

STRUCTURED DESIGN

The aim of structured design is to transform the results of the structured analysis (i.e. a DFD

representation) into a structure chart. Structured design provides two strategies to guide

transformation of a DFD into a structure chart.

• Transform analysis

• Transaction analysis

Normally, one starts with the level 1 DFD, transforms it into module representation using either

the transform or the transaction analysis and then proceeds towards the lower-level DFDs. At

each level of transformation, it is important to first determine whether the transform or the

transaction analysis is applicable to a particular DFD. These are discussed in the subsequent sub-

sections.

Structure Chart

A structure chart represents the software architecture, i.e. the various modules making up the

system, the dependency (which module calls which other modules), and the parameters that are

passed among the different modules. Hence, the structure chart representation can be easily

implemented using some programming language. Since the main focus in a structure chart

representation is on the module structure of the software and the interactions among different

modules, the procedural aspects (e.g. how a particular functionality is achieved) are not

represented.

The basic building blocks which are used to design structure charts are the following:

 Rectangular boxes: Represents a module.

 Module invocation arrows: Control is passed from on one module to another

module in the direction of the connecting arrow.

 Data flow arrows: Arrows are annotated with data name; named data passes

from one module to another module in the direction of the arrow.

 Library modules: Represented by a rectangle with double edges.

 Selection: Represented by a diamond symbol.

 Repetition: Represented by a loop around the control flow arrow.

Structure Chart vs. Flow Chart

We are all familiar with the flow chart representation of a program. Flow chart is a convenient

technique to represent the flow of control in a program. A structure chart differs from a flow

chart in three principal ways:

 DEPT OF CSE & IT

 VSSUT, Burla

• It is usually difficult to identify the different modules of the software from its flow chart

representation.

• Data interchange among different modules is not represented in a flow chart.

• Sequential ordering of tasks inherent in a flow chart is suppressed in a structure chart.

Transform Analysis

Transform analysis identifies the primary functional components (modules) and the high level

inputs and outputs for these components. The first step in transform analysis is to divide the DFD

into 3 types of parts:

• Input

• Logical processing

• Output

The input portion of the DFD includes processes that transform input data from physical (e.g.

character from terminal) to logical forms (e.g. internal tables, lists, etc.). Each input portion is

called an afferent branch.

The output portion of a DFD transforms output data from logical to physical form. Each output

portion is called an efferent branch. The remaining portion of a DFD is called the central

transform.

In the next step of transform analysis, the structure chart is derived by drawing one functional

component for the central transform, and the afferent and efferent branches.

These are drawn below a root module, which would invoke these modules. Identifying the

highest level input and output transforms requires experience and skill. One possible approach is

to trace the inputs until a bubble is found whose output cannot be deduced from its inputs alone.

Processes which validate input or add information to them are not central transforms. Processes

which sort input or filter data from it are. The first level structure chart is produced by

representing each input and output unit as boxes and each central transform as a single box. In

the third step of transform analysis, the structure chart is refined by adding sub-functions

required by each of the high-level functional components. Many levels of functional components

may be added. This process of breaking functional components into subcomponents is called

factoring. Factoring includes adding read and write modules, error-handling modules,

initialization and termination process, identifying customer modules, etc. The factoring process

is continued until all bubbles in the DFD are represented in the structure chart.

 DEPT OF CSE & IT

 VSSUT, Burla

Example: Structure chart for the RMS software

For this example, the context diagram was drawn earlier.

To draw the level 1 DFD (fig.11.1), from a cursory analysis of the problem

description, we can see that there are four basic functions that the system needs to

perform – accept the input numbers from the user, validate the numbers, calculate the

root mean square of the input numbers and, then display the result.

Fig. 11.1: Level 1 DFD

By observing the level 1 DFD, we identify the validate-input as the afferent branch and write-

output as the efferent branch. The remaining portion (i.e. compute-rms) forms the central

transform. By applying the step 2 and step 3 of transform analysis, we get the structure chart

shown in fig.11.2.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 11.2: Structure Chart

Transaction Analysis

A transaction allows the user to perform some meaningful piece of work. Transaction analysis

is useful while designing transaction processing programs. In a transaction-driven system, one

of several possible paths through the DFD is traversed depending upon the input data item.

This is in contrast to a transform centered system which is characterized by similar processing

steps for each data item. Each different way in which input data is handled is a transaction. A

simple way to identify a transaction is to check the input data. The number of bubbles on

which the input data to the DFD are incident defines the number of transactions. However,

some transaction may not require any input data. These transactions can be identified from the

experience of solving a large number of examples.

For each identified transaction, trace the input data to the output. All the traversed bubbles

belong to the transaction. These bubbles should be mapped to the same module on the

structure chart. In the structure chart, draw a root module and below this module draw each

identified transaction a module. Every transaction carries a tag, which identifies its type.

 DEPT OF CSE & IT

 VSSUT, Burla

Transaction analysis uses this tag to divide the system into transaction modules and a

transaction-center module.

The structure chart for the supermarket prize scheme software is shown in fig. 11.3.

Fig. 11.3: Structure Chart for the supermarket prize scheme

 DEPT OF CSE & IT

 VSSUT, Burla

MODULE 2

LECTURE NOTE 12

OBJECT MODELLING USING UML

Model

A model captures aspects important for some application while omitting (or abstracting) the rest.

A model in the context of software development can be graphical, textual, mathematical, or

program code-based. Models are very useful in documenting the design and analysis results.

Models also facilitate the analysis and design procedures themselves. Graphical models are very

popular because they are easy to understand and construct. UML is primarily a graphical

modeling tool. However, it often requires text explanations to accompany the graphical models.

Need for a model

An important reason behind constructing a model is that it helps manage complexity. Once

models of a system have been constructed, these can be used for a variety of purposes during

software development, including the following:

• Analysis

• Specification

• Code generation

• Design

• Visualize and understand the problem and the working of a system

• Testing, etc.

In all these applications, the UML models can not only be used to document the results but also

to arrive at the results themselves. Since a model can be used for a variety of purposes, it is

reasonable to expect that the model would vary depending on the purpose for which it is being

constructed. For example, a model developed for initial analysis and specification should be very

different from the one used for design. A model that is being used for analysis and specification

would not show any of the design decisions that would be made later on during the design stage.

On the other hand, a model used for design purposes should capture all the design decisions.

Therefore, it is a good idea to explicitly mention the purpose for which a model has been

developed, along with the model.

 DEPT OF CSE & IT

 VSSUT, Burla

Unified Modeling Language (UML)

UML, as the name implies, is a modeling language. It may be used to visualize, specify,

construct, and document the artifacts of a software system. It provides a set of notations (e.g.

rectangles, lines, ellipses, etc.) to create a visual model of the system. Like any other language,

UML has its own syntax (symbols and sentence formation rules) and semantics (meanings of

symbols and sentences). Also, we should clearly understand that UML is not a system design or

development methodology, but can be used to document object-oriented and analysis results

obtained using some methodology.

Origin of UML

In the late 1980s and early 1990s, there was a proliferation of object-oriented design techniques

and notations. Different software development houses were using different notations to

document their object-oriented designs. These diverse notations used to give rise to a lot of

confusion.

UML was developed to standardize the large number of object-oriented modeling notations that

existed and were used extensively in the early 1990s. The principles ones in use were:

• Object Management Technology [Rumbaugh 1991]

• Booch’s methodology [Booch 1991]

• Object-Oriented Software Engineering [Jacobson 1992]

• Odell’s methodology [Odell 1992]

• Shaler and Mellor methodology [Shaler 1992]

It is needless to say that UML has borrowed many concepts from these modeling techniques.

Especially, concepts from the first three methodologies have been heavily drawn upon. UML

was adopted by Object Management Group (OMG) as a de facto standard in 1997. OMG is an

association of industries which tries to facilitate early formation of standards.

We shall see that UML contains an extensive set of notations and suggests construction of many

types of diagrams. It has successfully been used to model both large and small problems. The

elegance of UML, its adoption by OMG, and a strong industry backing have helped UML find

widespread acceptance. UML is now being used in a large number of software development

projects worldwide.

 DEPT OF CSE & IT

 VSSUT, Burla

UML Diagrams

UML can be used to construct nine different types of diagrams to capture five different views of

a system. Just as a building can be modeled from several views (or perspectives) such as

ventilation perspective, electrical perspective, lighting perspective, heating perspective, etc.; the

different UML diagrams provide different perspectives of the software system to be developed

and facilitate a comprehensive understanding of the system. Such models can be refined to get

the actual implementation of the system.

The UML diagrams can capture the following five views of a system:

• User’s view

• Structural view

• Behavioral view

• Implementation view

• Environmental view

Fig. 12.1: Different types of diagrams and views supported in UML

User’s view: This view defines the functionalities (facilities) made available by the system to

its users. The users’ view captures the external users’ view of the system in terms of the

functionalities offered by the system. The users’ view is a black-box view of the system where

the internal structure, the dynamic behavior of different system components, the

implementation etc. are not visible. The users’ view is very different from all other views in the

sense that it is a functional model compared to the object model of all other views. The users’

view can be considered as the central view and all other views are expected to conform to this

view. This thinking is in fact the crux of any user centric development style.

Structural view: The structural view defines the kinds of objects (classes) important to the

understanding of the working of a system and to its implementation. It also captures the

 DEPT OF CSE & IT

 VSSUT, Burla

relationships among the classes (objects). The structural model is also called the static model,

since the structure of a system does not change with time.

Behavioral view: The behavioral view captures how objects interact with each other to realize

the system behavior. The system behavior captures the time-dependent (dynamic) behavior of

the system.

Implementation view: This view captures the important components of the system and their

dependencies.

Environmental view: This view models how the different components are implemented on

different pieces of hardware.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 13

USE CASE DIAGRAM

Use Case Model

The use case model for any system consists of a set of “use cases”. Intuitively, use cases

represent the different ways in which a system can be used by the users. A simple way to find all

the use cases of a system is to ask the question: “What the users can do using the system?” Thus

for the Library Information System (LIS), the use cases could be:

• issue-book

• query-book

• return-book

• create-member

• add-book, etc

Use cases correspond to the high-level functional requirements. The use cases partition the

system behavior into transactions, such that each transaction performs some useful action from

the user’s point of view. To complete each transaction may involve either a single message or

multiple message exchanges between the user and the system to complete.

Purpose of use cases

The purpose of a use case is to define a piece of coherent behavior without revealing the internal

structure of the system. The use cases do not mention any specific algorithm to be used or the

internal data representation, internal structure of the software, etc. A use case typically

represents a sequence of interactions between the user and the system. These interactions consist

of one mainline sequence. The mainline sequence represents the normal interaction between a

user and the system. The mainline sequence is the most occurring sequence of interaction. For

example, the mainline sequence of the withdraw cash use case supported by a bank ATM drawn,

complete the transaction, and get the amount. Several variations to the main line sequence may

also exist. Typically, a variation from the mainline sequence occurs when some specific

conditions hold. For the bank ATM example, variations or alternate scenarios may occur, if the

password is invalid or the amount to be withdrawn exceeds the amount balance. The variations

are also called alternative paths. A use case can be viewed as a set of related scenarios tied

together by a common goal. The mainline sequence and each of the variations are called

scenarios or instances of the use case. Each scenario is a single path of user events and system

activity through the use case.

 DEPT OF CSE & IT

 VSSUT, Burla

Representation of Use Cases

Use cases can be represented by drawing a use case diagram and writing an accompanying text

elaborating the drawing. In the use case diagram, each use case is represented by an ellipse with

the name of the use case written inside the ellipse. All the ellipses (i.e. use cases) of a system are

enclosed within a rectangle which represents the system boundary. The name of the system

being modeled (such as Library Information System) appears inside the rectangle.

The different users of the system are represented by using the stick person icon. Each stick

person icon is normally referred to as an actor. An actor is a role played by a user with respect to

the system use. It is possible that the same user may play the role of multiple actors. Each actor

can participate in one or more use cases. The line connecting the actor and the use case is called

the communication relationship. It indicates that the actor makes use of the functionality

provided by the use case. Both the human users and the external systems can be represented by

stick person icons. When a stick person icon represents an external system, it is annotated by the

stereotype <<external system>>.

Example 1:

Tic-Tac-Toe Computer Game

Tic-tac-toe is a computer game in which a human player and the computer make

alternative moves on a 3×3 square. A move consists of marking previously

unmarked square. The player who first places three consecutive marks along a

straight line on the square (i.e. along a row, column, or diagonal) wins the game.

As soon as either the human player or the computer wins, a message

congratulating the winner should be displayed. If neither player manages to get

three consecutive marks along a straight line, but all the squares on the board are

filled up, then the game is drawn. The computer always tries to win a game.

The use case model for the Tic-tac-toe problem is shown in fig. 13.1. This

software has only one use case “play move”. Note that the use case “get-user-

move” is not used here. The name “get-user-move” would be inappropriate

because the use cases should be named from the user’s perspective.

Fig. 13.1: Use case model for tic-tac-toe game

 DEPT OF CSE & IT

 VSSUT, Burla

Text Description

Each ellipse on the use case diagram should be accompanied by a text description. The text

description should define the details of the interaction between the user and the computer and

other aspects of the use case. It should include all the behavior associated with the use case in

terms of the mainline sequence, different variations to the normal behavior, the system responses

associated with the use case, the exceptional conditions that may occur in the behavior, etc. The

behavior description is often written in a conversational style describing the interactions between

the actor and the system. The text description may be informal, but some structuring is

recommended. The following are some of the information which may be included in a use case

text description in addition to the mainline sequence, and the alternative scenarios.

Contact persons: This section lists the personnel of the client organization with whom the use

case was discussed, date and time of the meeting, etc.

Actors: In addition to identifying the actors, some information about actors using this use case

which may help the implementation of the use case may be recorded.

Pre-condition: The preconditions would describe the state of the system before the use case

execution starts.

Post-condition: This captures the state of the system after the use case has successfully

completed.

Non-functional requirements: This could contain the important constraints for the design and

implementation, such as platform and environment conditions, qualitative statements, response

time requirements, etc.

Exceptions, error situations: This contains only the domain-related errors such as lack of

user’s access rights, invalid entry in the input fields, etc. Obviously, errors that are not domain

related, such as software errors, need not be discussed here.

Sample dialogs: These serve as examples illustrating the use case.

Specific user interface requirements: These contain specific requirements for the user

interface of the use case. For example, it may contain forms to be used, screen shots, interaction

style, etc.

Document references: This part contains references to specific domain-related documents

which may be useful to understand the system operation

Example 2:

A supermarket needs to develop the following software to encourage regular

customers. For this, the customer needs to supply his/her residence address,

telephone number, and the driving license number. Each customer who registers

for this scheme is assigned a unique customer number (CN) by the computer. A

customer can present his CN to the checkout staff when he makes any purchase.

In this case, the value of his purchase is credited against his CN. At the end of

 DEPT OF CSE & IT

 VSSUT, Burla

each year, the supermarket intends to award surprise gifts to 10 customers who

make the highest total purchase over the year. Also, it intends to award a 22 caret

gold coin to every customer whose purchase exceeded Rs.10,000. The entries

against the CN are the reset on the day of every year after the prize winners’ lists

are generated.

The use case model for the Supermarket Prize Scheme is shown in fig. 13.2. As discussed

earlier, the use cases correspond to the high-level functional requirements. From the problem

description, we can identify three use cases: “register-customer”, “register-sales”, and “select-

winners”. As a sample, the text description for the use case “register-customer” is shown.

Fig. 13.2 Use case model for Supermarket Prize Scheme

 DEPT OF CSE & IT

 VSSUT, Burla

Text description

U1: register-customer: Using this use case, the customer can register himself by providing the

necessary details.

Scenario 1: Mainline sequence

1. Customer: select register customer option.

2. System: display prompt to enter name, address, and telephone number.

Customer: enter the necessary values.

4. System: display the generated id and the message that the customer has been

successfully registered.

Scenario 2: at step 4 of mainline sequence

1. System: displays the message that the customer has already registered.

Scenario 2: at step 4 of mainline sequence

1. System: displays the message that some input information has not been

entered. The system displays a prompt to enter the missing value.

The description for other use cases is written in a similar fashion.

Utility of use case diagrams

From use case diagram, it is obvious that the utility of the use cases are represented by ellipses.

They along with the accompanying text description serve as a type of requirements specification

of the system and form the core model to which all other models must conform. But, what about

the actors (stick person icons)? One possible use of identifying the different types of users

(actors) is in identifying and implementing a security mechanism through a login system, so that

each actor can involve only those functionalities to which he is entitled to. Another possible use

is in preparing the documentation (e.g. users’ manual) targeted at each category of user. Further,

actors help in identifying the use cases and understanding the exact functioning of the system.

Factoring of use cases

It is often desirable to factor use cases into component use cases. Actually, factoring of use cases

are required under two situations. First, complex use cases need to be factored into simpler use

cases. This would not only make the behavior associated with the use case much more

comprehensible, but also make the corresponding interaction diagrams more tractable. Without

decomposition, the interaction diagrams for complex use cases may become too large to be

accommodated on a single sized (A4) paper. Secondly, use cases need to be factored whenever

there is common behavior across different use cases. Factoring would make it possible to define

such behavior only once and reuse it whenever required. It is desirable to factor out common

usage such as error handling from a set of use cases. This makes analysis of the class design

much simpler and elegant. However, a word of caution here. Factoring of use cases should not

be done except for achieving the above two objectives. From the design point of view, it is not

advantageous to break up a use case into many smaller parts just for the sake of it.

 DEPT OF CSE & IT

 VSSUT, Burla

UML offers three mechanisms for factoring of use cases as follows:

1. Generalization

Use case generalization can be used when one use case that is similar to another, but

does something slightly differently or something more. Generalization works the same

way with use cases as it does with classes. The child use case inherits the behavior and

meaning of the parent use case. The notation is the same too (as shown in fig. 13.3). It is

important to remember that the base and the derived use cases are separate use cases and

should have separate text descriptions.

Fig. 13.3: Representation of use case generalization

Includes

The includes relationship in the older versions of UML (prior to UML 1.1) was known as

the uses relationship. The includes relationship involves one use case including the

behavior of another use case in its sequence of events and actions. The includes

relationship occurs when a chunk of behavior that is similar across a number of use

cases. The factoring of such behavior will help in not repeating the specification and

implementation across different use cases. Thus, the includes relationship explores the

issue of reuse by factoring out the commonality across use cases. It can also be gainfully

employed to decompose a large and complex use cases into more manageable parts. As

shown in fig. 13.4 the includes relationship is represented using a predefined stereotype

<<include>>.In the includes relationship, a base use case compulsorily and automatically

 DEPT OF CSE & IT

 VSSUT, Burla

includes the behavior of the common use cases. As shown in example fig. 13.5, issue-

book and renew-book both include check-reservation use case. The base use case may

include several use cases. In such cases, it may interleave their associated common use

cases together. The common use case becomes a separate use case and the independent

text description should be provided for it.

Fig. 13.4 Representation of use case inclusion

Fig. 13.5: Example use case inclusion

Extends

The main idea behind the extends relationship among the use cases is that it allows you to

show optional system behavior. An optional system behavior is extended only under certain

conditions. This relationship among use cases is also predefined as a stereotype as shown in

fig. 13.6. The extends relationship is similar to generalization. But unlike generalization, the

extending use case can add additional behavior only at an extension point only when certain

 DEPT OF CSE & IT

 VSSUT, Burla

conditions are satisfied. The extension points are points within the use case where variation

to the mainline (normal) action sequence may occur. The extends relationship is normally

used to capture alternate paths or scenarios.

Fig. 13.6: Example use case extension

Organization of use cases

When the use cases are factored, they are organized hierarchically. The high-level use cases are

refined into a set of smaller and more refined use cases as shown in fig. 13.7. Top-level use

cases are super-ordinate to the refined use cases. The refined use cases are sub-ordinate to the

top-level use cases. Note that only the complex use cases should be decomposed and organized

in a hierarchy. It is not necessary to decompose simple use cases. The functionality of the super-

ordinate use cases is traceable to their sub-ordinate use cases. Thus, the functionality provided

by the super-ordinate use cases is composite of the functionality of the sub-ordinate use cases. In

the highest level of the use case model, only the fundamental use cases are shown. The focus is

on the application context. Therefore, this level is also referred to as the context diagram. In the

context diagram, the system limits are emphasized. In the top-level diagram, only those use

cases with which external users of the system. The subsystem-level use cases specify the

services offered by the subsystems. Any number of levels involving the subsystems may be

utilized. In the lowest level of the use case hierarchy, the class-level use cases specify the

functional fragments or operations offered by the classes.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 13.7: Hierarchical organization of use cases

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 14

CLASS DIAGRAMS

A class diagram describes the static structure of a system. It shows how a system is structured rather

than how it behaves. The static structure of a system comprises of a number of class diagrams and

their dependencies. The main constituents of a class diagram are classes and their relationships:

generalization, aggregation, association, and various kinds of dependencies.

Classes

The classes represent entities with common features, i.e. attributes and operations. Classes are

represented as solid outline rectangles with compartments. Classes have a mandatory name

compartment where the name is written centered in boldface. The class name is usually written using

mixed case convention and begins with an uppercase. The class names are usually chosen to be

singular nouns. Classes have optional attributes and operations compartments. A class may appear on

several diagrams. Its attributes and operations are suppressed on all but one diagram.

Attributes

An attribute is a named property of a class. It represents the kind of data that an object might contain.

Attributes are listed with their names, and may optionally contain specification of their type, an

initial value, and constraints. The type of the attribute is written by appending a colon and the type

name after the attribute name. Typically, the first letter of a class name is a small letter. An example

for an attribute is given.

bookName : String

Operation

Operation is the implementation of a service that can be requested from any object of the class to

affect behaviour. An object’s data or state can be changed by invoking an operation of the object. A

class may have any number of operations or no operation at all. Typically, the first letter of an

operation name is a small letter. Abstract operations are written in italics. The parameters of an

operation (if any), may have a kind specified, which may be ‘in’, ‘out’ or ‘inout’. An operation may

have a return type consisting of a single return type expression. An example for an operation is given.

issueBook(in bookName):Boolean

Association

Associations are needed to enable objects to communicate with each other. An association describes

a connection between classes. The association relation between two objects is called object

connection or link. Links are instances of associations. A link is a physical or conceptual connection

between object instances. For example, suppose Amit has borrowed the book Graph Theory. Here,

 DEPT OF CSE & IT

 VSSUT, Burla

borrowed is the connection between the objects Amit and Graph Theory book. Mathematically, a link

can be considered to be a tuple, i.e. an ordered list of object instances. An association describes a

group of links with a common structure and common semantics. For example, consider the statement

that Library Member borrows Books. Here, borrows is the association between the class

LibraryMember and the class Book. Usually, an association is a binary relation (between two

classes). However, three or more different classes can be involved in an association. A class can have

an association relationship with itself (called recursive association). In this case, it is usually assumed

that two different objects of the class are linked by the association relationship. Association between

two classes is represented by drawing a straight line between the concerned classes.

Fig. 14.1 illustrates the graphical representation of the association relation. The name of the

association is written alongside the association line. An arrowhead may be placed on the association

line to indicate the reading direction of the association. The arrowhead should not be misunderstood

to be indicating the direction of a pointer implementing an association. On each side of the

association relation, the multiplicity is noted as an individual number or as a value range. The

multiplicity indicates how many instances of one class are associated with each other. Value ranges

of multiplicity are noted by specifying the minimum and maximum value, separated by two dots, e.g.

1.5. An asterisk is a wild card and means many (zero or more). The association of fig. 14.1 should be

read as “Many books may be borrowed by a Library Member”. Observe that associations (and links)

appear as verbs in the problem statement.

Fig. 14.1: Association between two classes

Associations are usually realized by assigning appropriate reference attributes to the classes involved.

Thus, associations can be implemented using pointers from one object class to another. Links and

associations can also be implemented by using a separate class that stores which objects of a class are

linked to which objects of another class. Some CASE tools use the role names of the association

relation for the corresponding automatically generated attribute.

Aggregation

Aggregation is a special type of association where the involved classes represent a whole-part

relationship. The aggregate takes the responsibility of forwarding messages to the appropriate parts.

Thus, the aggregate takes the responsibility of delegation and leadership. When an instance of one

object contains instances of some other objects, then aggregation (or composition) relationship exists

between the composite object and the component object. Aggregation is represented by the diamond

 DEPT OF CSE & IT

 VSSUT, Burla

symbol at the composite end of a relationship. The number of instances of the component class

aggregated can also be shown as in fig. 14.2

Fig. 14.2: Representation of aggregation

Aggregation relationship cannot be reflexive (i.e. recursive). That is, an object cannot contain objects

of the same class as itself. Also, the aggregation relation is not symmetric. That is, two classes A and

B cannot contain instances of each other. However, the aggregation relationship can be transitive. In

this case, aggregation may consist of an arbitrary number of levels.

Composition

Composition is a stricter form of aggregation, in which the parts are existence-dependent on the

whole. This means that the life of the parts closely ties to the life of the whole. When the whole is

created, the parts are created and when the whole is destroyed, the parts are destroyed. A typical

example of composition is an invoice object with invoice items. As soon as the invoice object is

created, all the invoice items in it are created and as soon as the invoice object is destroyed, all

invoice items in it are also destroyed. The composition relationship is represented as a filled diamond

drawn at the composite-end. An example of the composition relationship is shown in fig. 14.3

Fig 14.3: Representation of composition

Association vs. Aggregation vs. Composition

 Association is the most general (m:n) relationship. Aggregation is a stronger

relationship where one is a part of the other. Composition is even stronger than

aggregation, ties the lifecycle of the part and the whole together.

 Association relationship can be reflexive (objects can have relation to itself), but

aggregation cannot be reflexive. Moreover, aggregation is anti-symmetric (If B is a

part of A, A cannot be a part of B).

 Composition has the property of exclusive aggregation i.e. an object can be a part of

only one composite at a time. For example, a Frame belongs to exactly one Window

 DEPT OF CSE & IT

 VSSUT, Burla

whereas in simple aggregation, a part may be shared by several objects. For example,

a Wall may be a part of one or more Room objects.

 In addition, in composition, the whole has the responsibility for the disposition of all

its parts, i.e. for their creation and destruction.

 in general, the lifetime of parts and composite coincides

 parts with non-fixed multiplicity may be created after composite itself

 parts might be explicitly removed before the death of the composite

For example, when a Frame is created, it has to be attached to an enclosing Window.

Similarly, when the Window is destroyed, it must in turn destroy its Frame parts.

Inheritance vs. Aggregation/Composition

 Inheritance describes ‘is a’ / ‘is a kind of’ relationship between classes (base class - derived

class) whereas aggregation describes ‘has a’ relationship between classes. Inheritance means

that the object of the derived class inherits the properties of the base class; aggregation means

that the object of the whole has objects of the part. For example, the relation “cash payment

is a kind of payment” is modeled using inheritance; “purchase order has a few items” is

modeled using aggregation.

 Inheritance is used to model a “generic-specific” relationship between classes whereas

aggregation/composition is used to model a “whole-part” relationship between classes.

 Inheritance means that the objects of the subclass can be used anywhere the super class may

appear, but not the reverse; i.e. wherever we could use instances of ‘payment’ in the system,

we could substitute it with instances of ‘cash payment’, but the reverse cannot be done.

 Inheritance is defined statically. It cannot be changed at run-time. Aggregation is defined

dynamically and can be changed at run-time. Aggregation is used when the type of the object

can change over time.

For example, consider this situation in a business system. A BusinessPartner might be a

Customer or a Supplier or both. Initially we might be tempted to model it as in Fig 14.4(a).

But in fact, during its lifetime, a business partner might become a customer as well as a

supplier, or it might change from one to the other. In such cases, we prefer aggregation

instead (see Fig 14.4(b). Here, a business partner is a Customer if it has an aggregated

Customer object, a Supplier if it has an aggregated Supplier object and a

"Customer_Supplier" if it has both. Here, we have only two types. Hence, we are able to

model it as inheritance. But what if there were several different types and combinations

thereof? The inheritance tree would be absolutely incomprehensible.

Also, the aggregation model allows the possibility for a business partner to be neither - i.e.

has neither a customer nor a supplier object aggregated with it.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 14.4 a) Representation of BusinessPartner, Customer, Supplier relationship

using inheritance

Fig. 14.4 b) Representation of BusinessPartner, Customer, Supplier relationship

using aggregation

 DEPT OF CSE & IT

 VSSUT, Burla

• The advantage of aggregation is the integrity of encapsulation. The operations of an object are the

interfaces of other objects which imply low implementation dependencies. The significant

disadvantage of aggregation is the increase in the number of objects and their relationships. On the

other hand, inheritance allows for an easy way to modify implementation for reusability. But the

significant disadvantage is that it breaks encapsulation, which implies implementation dependence.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 15

INTERACTION DIAGRAMS

Interaction diagrams are models that describe how group of objects collaborate to realize some

behavior. Typically, each interaction diagram realizes the behavior of a single use case. An

interaction diagram shows a number of example objects and the messages that are passed between

the objects within the use case.

There are two kinds of interaction diagrams: sequence diagrams and collaboration diagrams. These

two diagrams are equivalent in the sense that any one diagram can be derived automatically from the

other. However, they are both useful. These two actually portray different perspectives of behavior of

the system and different types of inferences can be drawn from them. The interaction diagrams can

be considered as a major tool in the design methodology.

Sequence Diagram

A sequence diagram shows interaction among objects as a two dimensional chart. The chart is read

from top to bottom. The objects participating in the interaction are shown at the top of the chart as

boxes attached to a vertical dashed line. Inside the box the name of the object is written with a colon

separating it from the name of the class and both the name of the object and the class are underlined.

The objects appearing at the top signify that the object already existed when the use case execution

was initiated. However, if some object is created during the execution of the use case and

participates in the interaction (e.g. a method call), then the object should be shown at the appropriate

place on the diagram where it is created. The vertical dashed line is called the object’s lifeline. The

lifeline indicates the existence of the object at any particular point of time. The rectangle drawn on

the lifetime is called the activation symbol and indicates that the object is active as long as the

rectangle exists. Each message is indicated as an arrow between the life line of two objects. The

messages are shown in chronological order from the top to the bottom. That is, reading the diagram

from the top to the bottom would show the sequence in which the messages occur. Each message is

labeled with the message name. Some control information can also be included. Two types of control

information are particularly valuable.

• A condition (e.g. [invalid]) indicates that a message is sent, only if the condition is true.

• An iteration marker shows the message is sent many times to multiple receiver objects as

would happen when a collection or the elements of an array are being iterated. The basis of

the iteration can also be indicated e.g. [for every book object].

The sequence diagram for the book renewal use case for the Library Automation Software is shown

in fig. 15.1. The development of the sequence diagram in the development methodology would help

us in determining the responsibilities of the different classes; i.e. what methods should be supported

by each class.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 15.1: Sequence diagram for the renew book use case

Collaboration Diagram

A collaboration diagram shows both structural and behavioral aspects explicitly. This is unlike a

sequence diagram which shows only the behavioral aspects. The structural aspect of a collaboration

diagram consists of objects and the links existing between them. In this diagram, an object is also

called a collaborator. The behavioral aspect is described by the set of messages exchanged among

the different collaborators. The link between objects is shown as a solid line and can be used to send

messages between two objects. The message is shown as a labeled arrow placed near the link.

Messages are prefixed with sequence numbers because they are only way to describe the relative

sequencing of the messages in this diagram. The collaboration diagram for the example of fig. 15.1

is shown in fig. 15.2. The use of the collaboration diagrams in our development process would be to

help us to determine which classes are associated with which other classes.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig 15.2: Collaboration diagram for the renew book use case

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 16

ACTIVITY AND STATE CHART DIAGRAM

The activity diagram is possibly one modeling element which was not present in any of the

predecessors of UML. No such diagrams were present either in the works of Booch, Jacobson, or

Rumbaugh. It is possibly based on the event diagram of Odell [1992] through the notation is very

different from that used by Odell. The activity diagram focuses on representing activities or chunks

of processing which may or may not correspond to the methods of classes. An activity is a state with

an internal action and one or more outgoing transitions which automatically follow the termination

of the internal activity. If an activity has more than one outgoing transitions, then these must be

identified through conditions. An interesting feature of the activity diagrams is the swim lanes. Swim

lanes enable you to group activities based on who is performing them, e.g. academic department vs.

hostel office. Thus swim lanes subdivide activities based on the responsibilities of some components.

The activities in a swim lane can be assigned to some model elements, e.g. classes or some

component, etc.

Activity diagrams are normally employed in business process modeling. This is carried out during

the initial stages of requirements analysis and specification. Activity diagrams can be very useful to

understand complex processing activities involving many components. Later these diagrams can be

used to develop interaction diagrams which help to allocate activities (responsibilities) to classes.

The student admission process in a university is shown as an activity diagram in fig. 16.1. This

shows the part played by different components of the Institute in the admission procedure. After the

fees are received at the account section, parallel activities start at the hostel office, hospital, and the

Department. After all these activities complete (this synchronization is represented as a horizontal

line), the identity card can be issued to a student by the Academic section.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 16.1: Activity diagram for student admission procedure at a university

Activity diagrams vs. procedural flow charts

Activity diagrams are similar to the procedural flow charts. The difference is that activity diagrams

support description of parallel activities and synchronization aspects involved in different activities.

STATE CHART DIAGRAM

A state chart diagram is normally used to model how the state of an object changes in its lifetime.

State chart diagrams are good at describing how the behavior of an object changes across several use

case executions. However, if we are interested in modeling some behavior that involves several

objects collaborating with each other, state chart diagram is not appropriate. State chart diagrams are

based on the finite state machine (FSM) formalism.

 DEPT OF CSE & IT

 VSSUT, Burla

A FSM consists of a finite number of states corresponding to those of the object being modeled. The

object undergoes state changes when specific events occur. The FSM formalism existed long before

the object-oriented technology and has been used for a wide variety of applications. Apart from

modeling, it has even been used in theoretical computer science as a generator for regular languages.

A major disadvantage of the FSM formalism is the state explosion problem. The number of states

becomes too many and the model too complex when used to model practical systems. This problem

is overcome in UML by using state charts. The state chart formalism was proposed by David Harel

[1990]. A state chart is a hierarchical model of a system and introduces the concept of a composite

state (also called nested state).

Actions are associated with transitions and are considered to be processes that occur quickly and are

not interruptible. Activities are associated with states and can take longer. An activity can be

interrupted by an event.

The basic elements of the state chart diagram are as follows:

 Initial state- This is represented as a filled circle.

 Final state- This is represented by a filled circle inside a larger circle.

 State- These are represented by rectangles with rounded corners.

 Transition- A transition is shown as an arrow between two states. Normally, the name of the

event which causes the transition is places alongside the arrow. A guard to the transition can

also be assigned. A guard is a Boolean logic condition. The transition can take place only if

the grade evaluates to true. The syntax for the label of the transition is shown in 3 parts: event

[guard]/action.

An example state chart for the order object of the Trade House Automation software is shown in fig.

16.2.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 16.2: State chart diagram for an order object

Activity diagram vs. State chart diagram

 Both activity and state chart diagrams model the dynamic behavior of the system. Activity

diagram is essentially a flowchart showing flow of control from activity to activity. A state

chart diagram shows a state machine emphasizing the flow of control from state to state.

 An activity diagram is a special case of a state chart diagram in which all or most of the states

are activity states and all or most of the transitions are triggered by completion of activities in

the source state (An activity is an ongoing non-atomic execution within a state machine).

 Activity diagrams may stand alone to visualize, specify, and document the dynamics of a

society of objects or they may be used to model the flow of control of an operation. State

chart diagrams may be attached to classes, use cases, or entire systems in order to visualize,

specify, and document the dynamics of an individual object.

 DEPT OF CSE & IT

 VSSUT, Burla

MODULE 3

LECTURE NOTE 17

CODING

Coding- The objective of the coding phase is to transform the design of a system into code in a

high level language and then to unit test this code. The programmers adhere to standard and well

defined style of coding which they call their coding standard. The main advantages of adhering

to a standard style of coding are as follows:

 A coding standard gives uniform appearances to the code written by different

engineers

 It facilitates code of understanding.

 Promotes good programming practices.

For implementing our design into a code, we require a good high level language. A programming

language should have the following features:

Characteristics of a Programming Language

 Readability: A good high-level language will allow programs to be written in some ways

that resemble a quite-English description of the underlying algorithms. If care is taken,

the coding may be done in a way that is essentially self-documenting.

 Portability: High-level languages, being essentially machine independent, should be able

to develop portable software.

 Generality: Most high-level languages allow the writing of a wide variety of programs,

thus relieving the programmer of the need to become expert in many diverse languages.

 Brevity: Language should have the ability to implement the algorithm with less amount

of code. Programs expressed in high-level languages are often considerably shorter than

their low-level equivalents.

 Error checking: Being human, a programmer is likely to make many mistakes in the

development of a computer program. Many high-level languages enforce a great deal of

error checking both at compile-time and at run-time.

 Cost: The ultimate cost of a programming language is a function of many of its

characteristics.

 DEPT OF CSE & IT

 VSSUT, Burla

 Familiar notation: A language should have familiar notation, so it can be understood by

most of the programmers.

 Quick translation: It should admit quick translation.

 Efficiency: It should permit the generation of efficient object code.

 Modularity: It is desirable that programs can be developed in the language as a

collection of separately compiled modules, with appropriate mechanisms for ensuring

self-consistency between these modules.

 Widely available: Language should be widely available and it should be possible to

provide translators for all the major machines and for all the major operating systems.

A coding standard lists several rules to be followed during coding, such as the way variables are

to be named, the way the code is to be laid out, error return conventions, etc.

Coding standards and guidelines

Good software development organizations usually develop their own coding standards and

guidelines depending on what best suits their organization and the type of products they develop.

The following are some representative coding standards.

1. Rules for limiting the use of global: These rules list what types of data can be declared

global and what cannot.

2. Contents of the headers preceding codes for different modules: The information

contained in the headers of different modules should be standard for an organization. The

exact format in which the header information is organized in the header can also be

specified. The following are some standard header data:

• Name of the module.

• Date on which the module was created.

• Author’s name.

• Modification history.

• Synopsis of the module.

• Different functions supported, along with their input/output parameters.

• Global variables accessed/modified by the module.

 DEPT OF CSE & IT

 VSSUT, Burla

3. Naming conventions for global variables, local variables, and constant identifiers: A

possible naming convention can be that global variable names always start with a capital

letter, local variable names are made of small letters, and constant names are always

capital letters.

4. Error return conventions and exception handling mechanisms: The way error

conditions are reported by different functions in a program are handled should be

standard within an organization. For example, different functions while encountering an

error condition should either return a 0 or 1 consistently.

The following are some representative coding guidelines recommended by many software

development organizations.

1. Do not use a coding style that is too clever or too difficult to understand: Code

should be easy to understand. Many inexperienced engineers actually take pride in

writing cryptic and incomprehensible code. Clever coding can obscure meaning of the

code and hamper understanding. It also makes maintenance difficult.

2. Avoid obscure side effects: The side effects of a function call include modification of

parameters passed by reference, modification of global variables, and I/O operations. An

obscure side effect is one that is not obvious from a casual examination of the code.

Obscure side effects make it difficult to understand a piece of code. For example, if a

global variable is changed obscurely in a called module or some file I/O is performed

which is difficult to infer from the function’s name and header information, it becomes

difficult for anybody trying to understand the code.

3. Do not use an identifier for multiple purposes: Programmers often use the same

identifier to denote several temporary entities. For example, some programmers use a

temporary loop variable for computing and a storing the final result. The rationale that is

usually given by these programmers for such multiple uses of variables is memory

efficiency, e.g. three variables use up three memory locations, whereas the same variable

used in three different ways uses just one memory location. However, there are several

things wrong with this approach and hence should be avoided. Some of the problems

caused by use of variables for multiple purposes as follows:

 Each variable should be given a descriptive name indicating its purpose. This is

not possible if an identifier is used for multiple purposes. Use of a variable for

multiple purposes can lead to confusion and make it difficult for somebody trying to

read and understand the code.

 DEPT OF CSE & IT

 VSSUT, Burla

 Use of variables for multiple purposes usually makes future enhancements more

difficult.

4. The code should be well-documented: As a rule of thumb, there must be at least one

comment line on the average for every three-source line.

5. The length of any function should not exceed 10 source lines: A function that is very

lengthy is usually very difficult to understand as it probably carries out many different

functions. For the same reason, lengthy functions are likely to have disproportionately

larger number of bugs.

6. Do not use goto statements: Use of goto statements makes a program unstructured and

very difficult to understand.

Code Review

Code review for a model is carried out after the module is successfully compiled and the all the

syntax errors have been eliminated. Code reviews are extremely cost-effective strategies for

reduction in coding errors and to produce high quality code. Normally, two types of reviews are

carried out on the code of a module. These two types code review techniques are code inspection

and code walk through.

Code Walk Throughs

Code walk through is an informal code analysis technique. In this technique, after a module has

been coded, successfully compiled and all syntax errors eliminated. A few members of the

development team are given the code few days before the walk through meeting to read and

understand code. Each member selects some test cases and simulates execution of the code by

hand (i.e. trace execution through each statement and function execution). The main objectives

of the walk through are to discover the algorithmic and logical errors in the code. The members

note down their findings to discuss these in a walk through meeting where the coder of the

module is present. Even though a code walk through is an informal analysis technique, several

guidelines have evolved over the years for making this naïve but useful analysis technique more

effective. Of course, these guidelines are based on personal experience, common sense, and

several subjective factors. Therefore, these guidelines should be considered as examples rather

than accepted as rules to be applied dogmatically. Some of these guidelines are the following:

 The team performing code walk through should not be either too big or too small. Ideally,

it should consist of between three to seven members.

 Discussion should focus on discovery of errors and not on how to fix the discovered

errors.

 DEPT OF CSE & IT

 VSSUT, Burla

 In order to foster cooperation and to avoid the feeling among engineers that they are

being evaluated in the code walk through meeting, managers should not attend the walk

through meetings.

Code Inspection

In contrast to code walk through, the aim of code inspection is to discover some common types

of errors caused due to oversight and improper programming. In other words, during code

inspection the code is examined for the presence of certain kinds of errors, in contrast to the hand

simulation of code execution done in code walk throughs. For instance, consider the classical

error of writing a procedure that modifies a formal parameter while the calling routine calls that

procedure with a constant actual parameter. It is more likely that such an error will be discovered

by looking for these kinds of mistakes in the code, rather than by simply hand simulating

execution of the procedure. In addition to the commonly made errors, adherence to coding

standards is also checked during code inspection. Good software development companies collect

statistics regarding different types of errors commonly committed by their engineers and identify

the type of errors most frequently committed. Such a list of commonly committed errors can be

used during code inspection to look out for possible errors.

Following is a list of some classical programming errors which can be checked during code

inspection:

 Use of uninitialized variables.

 Jumps into loops.

 Nonterminating loops.

 Incompatible assignments.

 Array indices out of bounds.

 Improper storage allocation and deallocation.

 Mismatches between actual and formal parameter in procedure calls.

 Use of incorrect logical operators or incorrect precedence among operators.

 Improper modification of loop variables.

 Comparison of equally of floating point variables, etc.

Clean Room Testing

Clean room testing was pioneered by IBM. This type of testing relies heavily on walk throughs,

inspection, and formal verification. The programmers are not allowed to test any of their code by

executing the code other than doing some syntax testing using a compiler. The software

development philosophy is based on avoiding software defects by using a rigorous inspection

process. The objective of this software is zero-defect software. The name ‘clean room’ was

derived from the analogy with semi-conductor fabrication units. In these units (clean rooms),

defects are avoided by manufacturing in ultra-clean atmosphere. In this kind of development,

inspections to check the consistency of the components with their specifications has replaced

unit-testing.

 DEPT OF CSE & IT

 VSSUT, Burla

This technique reportedly produces documentation and code that is more reliable and

maintainable than other development methods relying heavily on code execution-based testing.

The clean room approach to software development is based on five characteristics:

 Formal specification: The software to be developed is formally specified. A state-

transition model which shows system responses to stimuli is used to express the

specification.

 Incremental development: The software is partitioned into increments which are

developed and validated separately using the clean room process. These increments are

specified, with customer input, at an early stage in the process.

 Structured programming: Only a limited number of control and data abstraction

constructs are used. The program development process is process of stepwise refinement

of the specification.

 Static verification: The developed software is statically verified using rigorous software

inspections. There is no unit or module testing process for code components

 Statistical testing of the system: The integrated software increment is tested statistically

to determine its reliability. These statistical tests are based on the operational profile

which is developed in parallel with the system specification. The main problem with this

approach is that testing effort is increased as walk throughs, inspection, and verification

are time-consuming.

Software Documentation

When various kinds of software products are developed then not only the executable files and the

source code are developed but also various kinds of documents such as users’ manual, software

requirements specification (SRS) documents, design documents, test documents, installation

manual, etc are also developed as part of any software engineering process. All these documents

are a vital part of good software development practice. Good documents are very useful and

server the following purposes:

o Good documents enhance understandability and maintainability of a software

product. They reduce the effort and time required for maintenance.

o Use documents help the users in effectively using the system.

o Good documents help in effectively handling the manpower turnover problem.

Even when an engineer leaves the organization, and a new engineer comes in, he

can build up the required knowledge easily.

o Production of good documents helps the manager in effectively tracking the

progress of the project. The project manager knows that measurable progress is

achieved if a piece of work is done and the required documents have been

produced and reviewed.

 DEPT OF CSE & IT

 VSSUT, Burla

Different types of software documents can broadly be classified into the following:

• Internal documentation

• External documentation

Internal documentation is the code comprehension features provided as part of the source code

itself. Internal documentation is provided through appropriate module headers and comments

embedded in the source code. Internal documentation is also provided through the useful variable

names, module and function headers, code indentation, code structuring, use of enumerated types

and constant identifiers, use of user-defined data types, etc. Careful experiments suggest that out

of all types of internal documentation meaningful variable names is most useful in understanding

the code. This is of course in contrast to the common expectation that code commenting would

be the most useful. The research finding is obviously true when comments are written without

thought. For example, the following style of code commenting does not in any way help in

understanding the code.

a = 10; /* a made 10 */

But even when code is carefully commented, meaningful variable names still are more helpful in

understanding a piece of code. Good software development organizations usually ensure good

internal documentation by appropriately formulating their coding standards and coding

guidelines.

External documentation is provided through various types of supporting documents such as

users’ manual, software requirements specification document, design document, test documents,

etc. A systematic software development style ensures that all these documents are produced in an

orderly fashion.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 18

TESTING

Program Testing

Testing a program consists of providing the program with a set of test inputs (or test cases) and

observing if the program behaves as expected. If the program fails to behave as expected, then

the conditions under which failure occurs are noted for later debugging and correction.

Some commonly used terms associated with testing are:

 Failure: This is a manifestation of an error (or defect or bug). But, the mere presence of

an error may not necessarily lead to a failure.

 Test case: This is the triplet [I,S,O], where I is the data input to the system, S is the state

of the system at which the data is input, and O is the expected output of the system.

 Test suite: This is the set of all test cases with which a given software product is to be

tested.

Aim of Testing

The aim of the testing process is to identify all defects existing in a software product. However

for most practical systems, even after satisfactorily carrying out the testing phase, it is not

possible to guarantee that the software is error free. This is because of the fact that the input data

domain of most software products is very large. It is not practical to test the software

exhaustively with respect to each value that the input data may assume. Even with this practical

limitation of the testing process, the importance of testing should not be underestimated. It must

be remembered that testing does expose many defects existing in a software product. Thus

testing provides a practical way of reducing defects in a system and increasing the users’

confidence in a developed system.

Verification Vs Validation

Verification is the process of determining whether the output of one phase of software

development conforms to that of its previous phase, whereas validation is the process of

determining whether a fully developed system conforms to its requirements specification. Thus

while verification is concerned with phase containment of errors, the aim of validation is that the

final product be error free.

Design of Test Cases

Exhaustive testing of almost any non-trivial system is impractical due to the fact that the domain

of input data values to most practical software systems is either extremely large or infinite.

Therefore, we must design an optional test suite that is of reasonable size and can uncover as

many errors existing in the system as possible. Actually, if test cases are selected randomly,

many of these randomly selected test cases do not contribute to the significance of the test suite,

 DEPT OF CSE & IT

 VSSUT, Burla

i.e. they do not detect any additional defects not already being detected by other test cases in the

suite. Thus, the number of random test cases in a test suite is, in general, not an indication of the

effectiveness of the testing. In other words, testing a system using a large collection of test cases

that are selected at random does not guarantee that all (or even most) of the errors in the system

will be uncovered. Consider the following example code segment which finds the greater of two

integer values x and y. This code segment has a simple programming error.

if (x>y)

max = x;

else

max = x;

For the above code segment, the test suite, {(x=3,y=2);(x=2,y=3)} can detect the error, whereas a

larger test suite {(x=3,y=2);(x=4,y=3);(x=5,y=1)} does not detect the error. So, it would be

incorrect to say that a larger test suite would always detect more errors than a smaller one, unless

of course the larger test suite has also been carefully designed. This implies that the test suite

should be carefully designed than picked randomly. Therefore, systematic approaches should be

followed to design an optimal test suite. In an optimal test suite, each test case is designed to

detect different errors.

Functional Testing Vs. Structural Testing

In the black-box testing approach, test cases are designed using only the functional specification

of the software, i.e. without any knowledge of the internal structure of the software. For this

reason, black-box testing is known as functional testing. On the other hand, in the white-box

testing approach, designing test cases requires thorough knowledge about the internal structure

of software, and therefore the white-box testing is called structural testing.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 19

BLACK-BOX TESTING

Testing in the large vs. testing in the small

Software products are normally tested first at the individual component (or unit) level. This is

referred to as testing in the small. After testing all the components individually, the components

are slowly integrated and tested at each level of integration (integration testing). Finally, the fully

integrated system is tested (called system testing). Integration and system testing are known as

testing in the large.

Unit Testing

Unit testing is undertaken after a module has been coded and successfully reviewed. Unit testing

(or module testing) is the testing of different units (or modules) of a system in isolation.

In order to test a single module, a complete environment is needed to provide all that is necessary

for execution of the module. That is, besides the module under test itself, the following steps are

needed in order to be able to test the module:

• The procedures belonging to other modules that the module under test calls.

• Nonlocal data structures that the module accesses.

• A procedure to call the functions of the module under test with appropriate parameters.

Modules are required to provide the necessary environment (which either call or are called by the

module under test) is usually not available until they too have been unit tested, stubs and drivers

are designed to provide the complete environment for a module. The role of stub and driver

modules is pictorially shown in fig. 19.1. A stub procedure is a dummy procedure that has the

same I/O parameters as the given procedure but has a highly simplified behavior. For example, a

stub procedure may produce the expected behavior using a simple table lookup mechanism. A

driver module contain the nonlocal data structures accessed by the module under test, and would

also have the code to call the different functions of the module with appropriate parameter

values.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 19.1: Unit testing with the help of driver and stub modules

Black Box Testing

In the black-box testing, test cases are designed from an examination of the input/output values

only and no knowledge of design or code is required. The following are the two main approaches

to designing black box test cases.

• Equivalence class portioning

• Boundary value analysis

Equivalence Class Partitioning

In this approach, the domain of input values to a program is partitioned into a set of equivalence

classes. This partitioning is done such that the behavior of the program is similar for every input

data belonging to the same equivalence class. The main idea behind defining the equivalence

classes is that testing the code with any one value belonging to an equivalence class is as good as

testing the software with any other value belonging to that equivalence class. Equivalence classes

for a software can be designed by examining the input data and output data. The following are

some general guidelines for designing the equivalence classes:

1. If the input data values to a system can be specified by a range of values, then one

valid and two invalid equivalence classes should be defined.

2. If the input data assumes values from a set of discrete members of some domain,

then one equivalence class for valid input values and another equivalence class for

invalid input values should be defined.

 DEPT OF CSE & IT

 VSSUT, Burla

Example 1: For a software that computes the square root of an input integer which can assume

values in the range of 0 to 5000, there are three equivalence classes: The set of negative integers,

the set of integers in the range of 0 and 5000, and the integers larger than 5000. Therefore, the

test cases must include representatives for each of the three equivalence classes and a possible

test set can be: {-5,500,6000}.

Example 2: Design the black-box test suite for the following program. The program computes

the intersection point of two straight lines and displays the result. It reads two integer pairs (m1,

c1) and (m2, c2) defining the two straight lines of the form y=mx + c.

The equivalence classes are the following:

• Parallel lines (m1=m2, c1≠c2)

• Intersecting lines (m1≠m2)

• Coincident lines (m1=m2, c1=c2)

Now, selecting one representative value from each equivalence class, the test suit (2, 2) (2, 5), (5,

5) (7, 7), (10, 10) (10, 10) are obtained.

Boundary Value Analysis

A type of programming error frequently occurs at the boundaries of different equivalence classes

of inputs. The reason behind such errors might purely be due to psychological factors.

Programmers often fail to see the special processing required by the input values that lie at the

boundary of the different equivalence classes. For example, programmers may improperly use <

instead of <=, or conversely <= for <. Boundary value analysis leads to selection of test cases at

the boundaries of the different equivalence classes.

Example: For a function that computes the square root of integer values in the range of 0 and

5000, the test cases must include the following values: {0, -1,5000,5001}.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 20

WHITE-BOX TESTING

One white-box testing strategy is said to be stronger than another strategy, if all types of errors

detected by the first testing strategy is also detected by the second testing strategy, and the

second testing strategy additionally detects some more types of errors. When two testing

strategies detect errors that are different at least with respect to some types of errors, then they

are called complementary. The concepts of stronger and complementary testing are schematically

illustrated in fig. 20.1.

Fig. 20.1: Stronger and complementary testing strategies

Statement Coverage

The statement coverage strategy aims to design test cases so that every statement in a program is

executed at least once. The principal idea governing the statement coverage strategy is that

unless a statement is executed, it is very hard to determine if an error exists in that statement.

Unless a statement is executed, it is very difficult to observe whether it causes failure due to

some illegal memory access, wrong result computation, etc. However, executing some statement

once and observing that it behaves properly for that input value is no guarantee that it will

 DEPT OF CSE & IT

 VSSUT, Burla

behave correctly for all input values. In the following, designing of test cases using the statement

coverage strategy have been shown.

Example: Consider the Euclid’s GCD computation algorithm:

int compute_gcd(x, y)

int x, y;

{

1 while (x! = y)

{

2 if (x>y) then

3 x= x – y;

4 else y= y – x;

5 }

6 return x;

}

By choosing the test set {(x=3, y=3), (x=4, y=3), (x=3, y=4)}, we can exercise the program such

that all statements are executed at least once.

Branch Coverage

In the branch coverage-based testing strategy, test cases are designed to make each branch

condition to assume true and false values in turn. Branch testing is also known as edge testing as

in this testing scheme, each edge of a program’s control flow graph is traversed at least once.

It is obvious that branch testing guarantees statement coverage and thus is a stronger testing

strategy compared to the statement coverage-based testing. For Euclid’s GCD computation

algorithm, the test cases for branch coverage can be {(x=3, y=3), (x=3, y=2), (x=4, y=3), (x=3,

y=4)}.

Condition Coverage

In this structural testing, test cases are designed to make each component of a composite

conditional expression to assume both true and false values. For example, in the conditional

expression ((c1.and.c2).or.c3), the components c1, c2 and c3 are each made to assume both true

and false values. Branch testing is probably the simplest condition testing strategy where only

the compound conditions appearing in the different branch statements are made to assume the

true and false values. Thus, condition testing is a stronger testing strategy than branch testing and

branch testing is stronger testing strategy than the statement coverage-based testing. For a

composite conditional expression of n components, for condition coverage, 2ⁿ test cases are

required. Thus, for condition coverage, the number of test cases increases exponentially with the

number of component conditions. Therefore, a condition coverage-based testing technique is

practical only if n (the number of conditions) is small.

 DEPT OF CSE & IT

 VSSUT, Burla

Path Coverage

The path coverage-based testing strategy requires us to design test cases such that all linearly

independent paths in the program are executed at least once. A linearly independent path can be

defined in terms of the control flow graph (CFG) of a program.

Control Flow Graph (CFG)

A control flow graph describes the sequence in which the different instructions of a program get

executed. In other words, a control flow graph describes how the control flows through the

program. In order to draw the control flow graph of a program, all the statements of a program

must be numbered first. The different numbered statements serve as nodes of the control flow

graph (as shown in fig. 20.2). An edge from one node to another node exists if the execution of

the statement representing the first node can result in the transfer of control to the other node.

The CFG for any program can be easily drawn by knowing how to represent the sequence,

selection, and iteration type of statements in the CFG. After all, a program is made up from these

types of statements. Fig. 20.2 summarizes how the CFG for these three types of statements can

be drawn. It is important to note that for the iteration type of constructs such as the while

construct, the loop condition is tested only at the beginning of the loop and therefore the control

flow from the last statement of the loop is always to the top of the loop. Using these basic ideas,

the CFG of Euclid’s GCD computation algorithm can be drawn as shown in fig. 20.3.

Sequence:

a=5;

b = a*2-1;

Fig. 20.2 (a): CFG for sequence constructs

Selection:

if (a>b)

 c = 3;

 DEPT OF CSE & IT

 VSSUT, Burla

else

 c =5;

 c=c*c;

Fig. 20.2 (b): CFG for selection constructs

Iteration :

while (a>b)

{

b=b -1;

b=b*a;

}

c = a+b;

Fig. 20.2 (c): CFG for and iteration type of constructs

 DEPT OF CSE & IT

 VSSUT, Burla

EUCLID’S GCD Computation Algorithm

Fig. 20.3: Control flow diagram

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 21

Path

A path through a program is a node and edge sequence from the starting node to a terminal node

of the control flow graph of a program. There can be more than one terminal node in a program.

Writing test cases to cover all the paths of a typical program is impractical. For this reason, the

path-coverage testing does not require coverage of all paths but only coverage of linearly

independent paths.

Linearly independent path

A linearly independent path is any path through the program that introduces at least one new

edge that is not included in any other linearly independent paths. If a path has one new node

compared to all other linearly independent paths, then the path is also linearly independent. This is

because; any path having a new node automatically implies that it has a new edge. Thus, a path that

is sub-path of another path is not considered to be a linearly independent path.

Control Flow Graph

In order to understand the path coverage-based testing strategy, it is very much necessary to

understand the control flow graph (CFG) of a program. Control flow graph (CFG) of a program has

been discussed earlier.

Linearly Independent Path

The path-coverage testing does not require coverage of all paths but only coverage of linearly

independent paths. Linearly independent paths have been discussed earlier.

Cyclomatic Complexity

For more complicated programs it is not easy to determine the number of independent paths of the

program. McCabe’s cyclomatic complexity defines an upper bound for the number of linearly

independent paths through a program. Also, the McCabe’s cyclomatic complexity is very simple to

compute. Thus, the McCabe’s cyclomatic complexity metric provides a practical way of determining

the maximum number of linearly independent paths in a program. Though the McCabe’s metric does

not directly identify the linearly independent paths, but it informs approximately how many paths to

look for.

There are three different ways to compute the cyclomatic complexity. The answers computed by the

three methods are guaranteed to agree.

 DEPT OF CSE & IT

 VSSUT, Burla

Method 1:

Given a control flow graph G of a program, the cyclomatic complexity V(G) can be

computed as:

V(G) = E – N + 2

where N is the number of nodes of the control flow graph and E is the number of edges in the

control flow graph.

For the CFG of example shown in fig. 20.3, E=7 and N=6. Therefore, the cyclomatic

complexity = 7-6+2 = 3.

Method 2:

An alternative way of computing the cyclomatic complexity of a program from an inspection

of its control flow graph is as follows:

V(G) = Total number of bounded areas + 1

In the program’s control flow graph G, any region enclosed by nodes and edges can be called

as a bounded area. This is an easy way to determine the McCabe’s cyclomatic complexity.

But, what if the graph G is not planar, i.e. however you draw the graph, two or more edges

intersect? Actually, it can be shown that structured programs always yield planar graphs. But,

presence of GOTO’s can easily add intersecting edges. Therefore, for non-structured

programs, this way of computing the McCabe’s cyclomatic complexity cannot be used.

The number of bounded areas increases with the number of decision paths and loops.

Therefore, the McCabe’s metric provides a quantitative measure of testing difficulty and the

ultimate reliability. For the CFG example shown in fig. 20.3, from a visual examination of

the CFG the number of bounded areas is 2. Therefore the cyclomatic complexity, computing

with this method is also 2+1 = 3. This method provides a very easy way of computing the

cyclomatic complexity of CFGs, just from a visual examination of the CFG. On the other

hand, the other method of computing CFGs is more amenable to automation, i.e. it can be

easily coded into a program which can be used to determine the cyclomatic complexities of

arbitrary CFGs.

Method 3:

The cyclomatic complexity of a program can also be easily computed by computing the

number of decision statements of the program. If N is the number of decision statement of a

program, then the McCabe’s metric is equal to N+1.

 DEPT OF CSE & IT

 VSSUT, Burla

Data Flow-Based Testing

Data flow-based testing method selects test paths of a program according to the locations of the

definitions and uses of different variables in a program.

For a statement numbered S, let

DEF(S) = {X/statement S contains a definition of X}, and

USES(S) = {X/statement S contains a use of X}

For the statement S:a=b+c;, DEF(S) = {a}. USES(S) = {b,c}. The definition of variable X at

statement S is said to be live at statement S1, if there exists a path from statement S to statement S1

which does not contain any definition of X.

The definition-use chain (or DU chain) of a variable X is of form [X, S, S1], where S and S1 are

statement numbers, such that X Є DEF(S) and X Є USES(S1), and the definition of X in the

statement S is live at statement S1. One simple data flow testing strategy is to require that every DU

chain be covered at least once. Data flow testing strategies are useful for selecting test paths of a

program containing nested if and loop statements.

Mutation Testing

In mutation testing, the software is first tested by using an initial test suite built up from the different

white box testing strategies. After the initial testing is complete, mutation testing is taken up. The

idea behind mutation testing is to make few arbitrary changes to a program at a time. Each time the

program is changed, it is called as a mutated program and the change effected is called as a mutant. A

mutated program is tested against the full test suite of the program. If there exists at least one test

case in the test suite for which a mutant gives an incorrect result, then the mutant is said to be dead. If

a mutant remains alive even after all the test cases have been exhausted, the test data is enhanced to

kill the mutant. The process of generation and killing of mutants can be automated by predefining a

set of primitive changes that can be applied to the program. These primitive changes can be

alterations such as changing an arithmetic operator, changing the value of a constant, changing a data

type, etc. A major disadvantage of the mutation-based testing approach is that it is computationally

very expensive, since a large number of possible mutants can be generated.

Since mutation testing generates a large number of mutants and requires us to check each mutant

with the full test suite, it is not suitable for manual testing. Mutation testing should be used in

conjunction of some testing tool which would run all the test cases automatically.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 22

DEBUGGING, INTEGRATION AND SYSTEM TESTING

Need for Debugging

Once errors are identified in a program code, it is necessary to first identify the precise program

statements responsible for the errors and then to fix them. Identifying errors in a program code

and then fix them up are known as debugging.

Debugging Approaches

The following are some of the approaches popularly adopted by programmers for debugging.

Brute Force Method:

This is the most common method of debugging but is the least efficient method. In this

approach, the program is loaded with print statements to print the intermediate values

with the hope that some of the printed values will help to identify the statement in error.

This approach becomes more systematic with the use of a symbolic debugger (also called

a source code debugger), because values of different variables can be easily checked and

break points and watch points can be easily set to test the values of variables effortlessly.

Backtracking:

This is also a fairly common approach. In this approach, beginning from the statement at

which an error symptom has been observed, the source code is traced backwards until the

error is discovered. Unfortunately, as the number of source lines to be traced back

increases, the number of potential backward paths increases and may become

unmanageably large thus limiting the use of this approach.

Cause Elimination Method:

In this approach, a list of causes which could possibly have contributed to the error

symptom is developed and tests are conducted to eliminate each. A related technique of

identification of the error from the error symptom is the software fault tree analysis.

Program Slicing:

This technique is similar to back tracking. Here the search space is reduced by defining

slices. A slice of a program for a particular variable at a particular statement is the set of

source lines preceding this statement that can influence the value of that variable.

 DEPT OF CSE & IT

 VSSUT, Burla

Debugging Guidelines

Debugging is often carried out by programmers based on their ingenuity. The following are some

general guidelines for effective debugging:

 Many times debugging requires a thorough understanding of the program design. Trying

to debug based on a partial understanding of the system design and implementation may

require an inordinate amount of effort to be put into debugging even simple problems.

 Debugging may sometimes even require full redesign of the system. In such cases, a

common mistake that novice programmers often make is attempting not to fix the error

but its symptoms.

 One must be beware of the possibility that an error correction may introduce new errors.

Therefore after every round of error-fixing, regression testing must be carried out.

Program Analysis Tools

A program analysis tool means an automated tool that takes the source code or the executable

code of a program as input and produces reports regarding several important characteristics of

the program, such as its size, complexity, adequacy of commenting, adherence to programming

standards, etc. We can classify these into two broad categories of program analysis tools:

 Static Analysis tools

 Dynamic Analysis tools

 Static program analysis tools

Static Analysis Tool is also a program analysis tool. It assesses and computes various

characteristics of a software product without executing it. Typically, static analysis tools analyze

some structural representation of a program to arrive at certain analytical conclusions, e.g. that

some structural properties hold. The structural properties that are usually analyzed are:

 Whether the coding standards have been adhered to?

 Certain programming errors such as uninitialized variables and mismatch

between actual and formal parameters, variables that are declared but never

used are also checked.

Code walk throughs and code inspections might be considered as static analysis methods. But,

the term static program analysis is used to denote automated analysis tools. So, a compiler can be

considered to be a static program analysis tool.

Dynamic program analysis tools - Dynamic program analysis techniques require the program to

be executed and its actual behavior recorded. A dynamic analyzer usually instruments the code

(i.e. adds additional statements in the source code to collect program execution traces). The

instrumented code when executed allows us to record the behavior of the software for different

test cases. After the software has been tested with its full test suite and its behavior recorded, the

 DEPT OF CSE & IT

 VSSUT, Burla

dynamic analysis tool caries out a post execution analysis and produces reports which describe

the structural coverage that has been achieved by the complete test suite for the program. For

example, the post execution dynamic analysis report might provide data on extent statement,

branch and path coverage achieved.

Normally the dynamic analysis results are reported in the form of a histogram or a pie chart to

describe the structural coverage achieved for different modules of the program. The output of a

dynamic analysis tool can be stored and printed easily and provides evidence that thorough

testing has been done. The dynamic analysis results the extent of testing performed in white-box

mode. If the testing coverage is not satisfactory more test cases can be designed and added to the

test suite. Further, dynamic analysis results can help to eliminate redundant test cases from the

test suite.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 23

INTEGRATION TESTING
The primary objective of integration testing is to test the module interfaces, i.e. there are no

errors in the parameter passing, when one module invokes another module. During integration

testing, different modules of a system are integrated in a planned manner using an integration

plan. The integration plan specifies the steps and the order in which modules are combined to

realize the full system. After each integration step, the partially integrated system is tested. An

important factor that guides the integration plan is the module dependency graph. The structure

chart (or module dependency graph) denotes the order in which different modules call each

other. By examining the structure chart the integration plan can be developed.

Integration test approaches

There are four types of integration testing approaches. Any one (or a mixture) of the following

approaches can be used to develop the integration test plan. Those approaches are the following:

 Big bang approach

 Bottom- up approach

 Top-down approach

 Mixed-approach

Big-Bang Integration Testing

It is the simplest integration testing approach, where all the modules making up a system are

integrated in a single step. In simple words, all the modules of the system are simply put together

and tested. However, this technique is practicable only for very small systems. The main

problem with this approach is that once an error is found during the integration testing, it is very

difficult to localize the error as the error may potentially belong to any of the modules being

integrated. Therefore, debugging errors reported during big bang integration testing are very

expensive to fix.

Bottom-Up Integration Testing

In bottom-up testing, each subsystem is tested separately and then the full system is tested. A

subsystem might consist of many modules which communicate among each other through well-

defined interfaces. The primary purpose of testing each subsystem is to test the interfaces among

various modules making up the subsystem. Both control and data interfaces are tested. The test

cases must be carefully chosen to exercise the interfaces in all possible manners Large software

systems normally require several levels of subsystem testing; lower-level subsystems are

successively combined to form higher-level subsystems. A principal advantage of bottom-up

integration testing is that several disjoint subsystems can be tested simultaneously. In a pure

bottom-up testing no stubs are required, only test-drivers are required. A disadvantage of bottom-

up testing is the complexity that occurs when the system is made up of a large number of small

subsystems. The extreme case corresponds to the big-bang approach.

 DEPT OF CSE & IT

 VSSUT, Burla

Top-Down Integration Testing

Top-down integration testing starts with the main routine and one or two subordinate routines in

the system. After the top-level ‘skeleton’ has been tested, the immediately subroutines of the

‘skeleton’ are combined with it and tested. Top-down integration testing approach requires the

use of program stubs to simulate the effect of lower-level routines that are called by the routines

under test. A pure top-down integration does not require any driver routines. A disadvantage of

the top-down integration testing approach is that in the absence of lower-level routines, many

times it may become difficult to exercise the top-level routines in the desired manner since the

lower-level routines perform several low-level functions such as I/O.

Mixed Integration Testing

A mixed (also called sandwiched) integration testing follows a combination of top-down and

bottom-up testing approaches. In top-down approach, testing can start only after the top-level

modules have been coded and unit tested. Similarly, bottom-up testing can start only after the

bottom level modules are ready. The mixed approach overcomes this shortcoming of the top-

down and bottom-up approaches. In the mixed testing approaches, testing can start as and when

modules become available. Therefore, this is one of the most commonly used integration testing

approaches.

Phased Vs. Incremental Testing

The different integration testing strategies are either phased or incremental. A comparison of

these two strategies is as follows:

o In incremental integration testing, only one new module is added to the partial

system each time.

o In phased integration, a group of related modules are added to the partial system

each time.

Phased integration requires less number of integration steps compared to the incremental

integration approach. However, when failures are detected, it is easier to debug the system in the

incremental testing approach since it is known that the error is caused by addition of a single

module. In fact, big bang testing is a degenerate case of the phased integration testing approach.

System testing

System tests are designed to validate a fully developed system to assure that it meets its

requirements. There are essentially three main kinds of system testing:

 Alpha Testing. Alpha testing refers to the system testing carried out by the test team

within the developing organization.

 Beta testing. Beta testing is the system testing performed by a select group of friendly

customers.

 Acceptance Testing. Acceptance testing is the system testing performed by the customer

to determine whether he should accept the delivery of the system.

 DEPT OF CSE & IT

 VSSUT, Burla

In each of the above types of tests, various kinds of test cases are designed by referring to the

SRS document. Broadly, these tests can be classified into functionality and performance tests.

The functionality test tests the functionality of the software to check whether it satisfies the

functional requirements as documented in the SRS document. The performance test tests the

conformance of the system with the nonfunctional requirements of the system.

Performance Testing

Performance testing is carried out to check whether the system needs the non-functional

requirements identified in the SRS document. There are several types of performance testing.

Among of them nine types are discussed below. The types of performance testing to be carried

out on a system depend on the different non-functional requirements of the system documented

in the SRS document. All performance tests can be considered as black-box tests.

• Stress testing

• Volume testing

• Configuration testing

• Compatibility testing

• Regression testing

• Recovery testing

• Maintenance testing

• Documentation testing

• Usability testing

Stress Testing -Stress testing is also known as endurance testing. Stress testing

evaluates system performance when it is stressed for short periods of time. Stress tests are

black box tests which are designed to impose a range of abnormal and even illegal input

conditions so as to stress the capabilities of the software. Input data volume, input data

rate, processing time, utilization of memory, etc. are tested beyond the designed capacity.

For example, suppose an operating system is supposed to support 15 multi programmed

jobs, the system is stressed by attempting to run 15 or more jobs simultaneously. A real-

time system might be tested to determine the effect of simultaneous arrival of several

high-priority interrupts.

Stress testing is especially important for systems that usually operate below the maximum

capacity but are severely stressed at some peak demand hours. For example, if the non-

functional requirement specification states that the response time should not be more than

20 secs per transaction when 60 concurrent users are working, then during the stress

testing the response time is checked with 60 users working simultaneously.

Volume Testing-It is especially important to check whether the data structures (arrays,

queues, stacks, etc.) have been designed to successfully extraordinary situations. For

 DEPT OF CSE & IT

 VSSUT, Burla

example, a compiler might be tested to check whether the symbol table overflows when a

very large program is compiled.

Configuration Testing - This is used to analyze system behavior in various hardware

and software configurations specified in the requirements. Sometimes systems are built in

variable configurations for different users. For instance, we might define a minimal

system to serve a single user, and other extension configurations to serve additional users.

The system is configured in each of the required configurations and it is checked if the

system behaves correctly in all required configurations.

Compatibility Testing -This type of testing is required when the system interfaces with

other types of systems. Compatibility aims to check whether the interface functions

perform as required. For instance, if the system needs to communicate with a large

database system to retrieve information, compatibility testing is required to test the speed

and accuracy of data retrieval.

Regression Testing -This type of testing is required when the system being tested is an

upgradation of an already existing system to fix some bugs or enhance functionality,

performance, etc. Regression testing is the practice of running an old test suite after each

change to the system or after each bug fix to ensure that no new bug has been introduced

due to the change or the bug fix. However, if only a few statements are changed, then the

entire test suite need not be run - only those test cases that test the functions that are

likely to be affected by the change need to be run.

Recovery Testing -Recovery testing tests the response of the system to the presence of

faults, or loss of power, devices, services, data, etc. The system is subjected to the loss of

the mentioned resources (as applicable and discussed in the SRS document) and it is

checked if the system recovers satisfactorily. For example, the printer can be

disconnected to check if the system hangs. Or, the power may be shut down to check the

extent of data loss and corruption.

Maintenance Testing- This testing addresses the diagnostic programs, and other

procedures that are required to be developed to help maintenance of the system. It is

verified that the artifacts exist and they perform properly.

Documentation Testing- It is checked that the required user manual, maintenance

manuals, and technical manuals exist and are consistent. If the requirements specify the

types of audience for which a specific manual should be designed, then the manual is

checked for compliance.

 DEPT OF CSE & IT

 VSSUT, Burla

Usability Testing- Usability testing concerns checking the user interface to see if it

meets all user requirements concerning the user interface. During usability testing, the

display screens, report formats, and other aspects relating to the user interface

requirements are tested.

Error Seeding

Sometimes the customer might specify the maximum number of allowable errors that may be

present in the delivered system. These are often expressed in terms of maximum number of

allowable errors per line of source code. Error seed can be used to estimate the number of

residual errors in a system. Error seeding, as the name implies, seeds the code with some known

errors. In other words, some artificial errors are introduced into the program artificially. The

number of these seeded errors detected in the course of the standard testing procedure is

determined. These values in conjunction with the number of unseeded errors detected can be

used to predict:

• The number of errors remaining in the product.

• The effectiveness of the testing strategy.

Let N be the total number of defects in the system and let n of these defects be found by testing.

Let S be the total number of seeded defects, and let s of these defects be found during testing.

n/N = s/S

or

N = S × n/s

Defects still remaining after testing = N–n = n×(S – s)/s

Error seeding works satisfactorily only if the kind of seeded errors matches closely with the kind

of defects that actually exist. However, it is difficult to predict the types of errors that exist in a

software. To some extent, the different categories of errors that remain can be estimated to a first

approximation by analyzing historical data of similar projects. Due to the shortcoming that the

types of seeded errors should match closely with the types of errors actually existing in the code,

error seeding is useful only to a moderate extent.

Regression Testing

Regression testing does not belong to either unit test, integration test, or system testing. Instead,

it is a separate dimension to these three forms of testing. The functionality of regression testing

has been discussed earlier.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 24

SOFTWARE MAINTENANCE

Necessity of Software Maintenance

Software maintenance is becoming an important activity of a large number of software

organizations. This is no surprise, given the rate of hardware obsolescence, the immortality of a

software product per se, and the demand of the user community to see the existing software

products run on newer platforms, run in newer environments, and/or with enhanced features.

When the hardware platform is changed, and a software product performs some low-level

functions, maintenance is necessary. Also, whenever the support environment of a software

product changes, the software product requires rework to cope up with the newer interface. For

instance, a software product may need to be maintained when the operating system changes.

Thus, every software product continues to evolve after its development through maintenance

efforts. Therefore it can be stated that software maintenance is needed to correct errors, enhance

features, port the software to new platforms, etc.

Types of software maintenance

There are basically three types of software maintenance. These are:

 Corrective: Corrective maintenance of a software product is necessary to rectify the bugs

observed while the system is in use.

 Adaptive: A software product might need maintenance when the customers need the

product to run on new platforms, on new operating systems, or when they need the

product to interface with new hardware or software.

 Perfective: A software product needs maintenance to support the new features that users

want it to support, to change different functionalities of the system according to customer

demands, or to enhance the performance of the system.

Problems associated with software maintenance

Software maintenance work typically is much more expensive than what it should be and takes

more time than required. In software organizations, maintenance work is mostly carried out

using ad hoc techniques. The primary reason being that software maintenance is one of the most

neglected areas of software engineering. Even though software maintenance is fast becoming an

important area of work for many companies as the software products of yester years age, still

software maintenance is mostly being carried out as fire-fighting operations, rather than through

systematic and planned activities.

Software maintenance has a very poor image in industry. Therefore, an organization often cannot

employ bright engineers to carry out maintenance work. Even though maintenance suffers from a

poor image, the work involved is often more challenging than development work. During

 DEPT OF CSE & IT

 VSSUT, Burla

maintenance it is necessary to thoroughly understand someone else’s work and then carry out the

required modifications and extensions.

Another problem associated with maintenance work is that the majority of software products

needing maintenance are legacy products.

Software Reverse Engineering

Software reverse engineering is the process of recovering the design and the requirements

specification of a product from an analysis of its code. The purpose of reverse engineering is to

facilitate maintenance work by improving the understandability of a system and to produce the

necessary documents for a legacy system. Reverse engineering is becoming important, since

legacy software products lack proper documentation, and are highly unstructured. Even well-

designed products become legacy software as their structure degrades through a series of

maintenance efforts.

The first stage of reverse engineering usually focuses on carrying out cosmetic changes to the

code to improve its readability, structure, and understandability, without changing of its

functionalities. A process model for reverse engineering has been shown in fig. 24.1. A program

can be reformatted using any of the several available prettyprinter programs which layout the

program neatly. Many legacy software products with complex control structure and unthoughtful

variable names are difficult to comprehend. Assigning meaningful variable names is important

because meaningful variable names are the most helpful thing in code documentation. All

variables, data structures, and functions should be assigned meaningful names wherever possible.

Complex nested conditionals in the program can be replaced by simpler conditional statements

or whenever appropriate by case statements.

Fig. 24.1: A process model for reverse engineering

 DEPT OF CSE & IT

 VSSUT, Burla

After the cosmetic changes have been carried out on a legacy software the process of extracting

the code, design, and the requirements specification can begin. These activities are schematically

shown in fig. 24.2. In order to extract the design, a full understanding of the code is needed.

Some automatic tools can be used to derive the data flow and control flow diagram from the

code. The structure chart (module invocation sequence and data interchange among modules)

should also be extracted. The SRS document can be written once the full code has been

thoroughly understood and the design extracted.

Fig. 24.2: Cosmetic changes carried out before reverse engineering

Legacy software products

It is prudent to define a legacy system as any software system that is hard to maintain. The

typical problems associated with legacy systems are poor documentation, unstructured (spaghetti

code with ugly control structure), and lack of personnel knowledgeable in the product. Many of

the legacy systems were developed long time back. But, it is possible that a recently developed

system having poor design and documentation can be considered to be a legacy system.

The activities involved in a software maintenance project are not unique and depend on several

factors such as:

• the extent of modification to the product required

 DEPT OF CSE & IT

 VSSUT, Burla

• the resources available to the maintenance team

• the conditions of the existing product (e.g., how structured it is, how well documented it

is, etc.)

• the expected project risks, etc.

When the changes needed to a software product are minor and straightforward, the code can be

directly modified and the changes appropriately reflected in all the documents. But more

elaborate activities are required when the required changes are not so trivial. Usually, for

complex maintenance projects for legacy systems, the software process can be represented by a

reverse engineering cycle followed by a forward engineering cycle with an emphasis on as much

reuse as possible from the existing code and other documents.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 25

SOFTWARE MAINTENANCE PROCESS MODELS

Two broad categories of process models for software maintenance can be proposed. The first

model is preferred for projects involving small reworks where the code is changed directly and

the changes are reflected in the relevant documents later. This maintenance process is graphically

presented in fig. 25.1. In this approach, the project starts by gathering the requirements for

changes. The requirements are next analyzed to formulate the strategies to be adopted for code

change. At this stage, the association of at least a few members of the original development team

goes a long way in reducing the cycle team, especially for projects involving unstructured and

inadequately documented code. The availability of a working old system to the maintenance

engineers at the maintenance site greatly facilitates the task of the maintenance team as they get a

good insight into the working of the old system and also can compare the working of their

modified system with the old system. Also, debugging of the reengineered system becomes

easier as the program traces of both the systems can be compared to localize the bugs.

Fig. 25.1: Maintenance process model 1

 DEPT OF CSE & IT

 VSSUT, Burla

The second process model for software maintenance is preferred for projects where the amount

of rework required is significant. This approach can be represented by a reverse engineering

cycle followed by a forward engineering cycle. Such an approach is also known as software

reengineering. This process model is depicted in fig. 25.2. The reverse engineering cycle is

required for legacy products. During the reverse engineering, the old code is analyzed

(abstracted) to extract the module specifications. The module specifications are then analyzed to

produce the design. The design is analyzed (abstracted) to produce the original requirements

specification. The change requests are then applied to this requirements specification to arrive at

the new requirements specification. At the design, module specification, and coding a substantial

reuse is made from the reverse engineered products. An important advantage of this approach is

that it produces a more structured design compared to what the original product had, produces

good documentation, and very often results in increased efficiency. The efficiency improvements

are brought about by a more efficient design. However, this approach is more costly than the first

approach. An empirical study indicates that process 1 is preferable when the amount of rework is

no more than 15%. Besides the amount of rework, several other factors might affect the decision

regarding using process model 1 over process model 2:

 Reengineering might be preferable for products which exhibit a high failure rate.

 Reengineering might also be preferable for legacy products having poor design

and code structure.

Fig. 25.2: Maintenance process model 2

 DEPT OF CSE & IT

 VSSUT, Burla

Software Reengineering

Software reengineering is a combination of two consecutive processes i.e. software reverse

engineering and software forward engineering as shown in the fig. 25.2.

Estimation of approximate maintenance cost

It is well known that maintenance efforts require about 60% of the total life cycle cost for a

typical software product. However, maintenance costs vary widely from one application domain

to another. For embedded systems, the maintenance cost can be as much as 2 to 4 times the

development cost.

Boehm [1981] proposed a formula for estimating maintenance costs as part of his COCOMO

cost estimation model. Boehm’s maintenance cost estimation is made in terms of a quantity

called the Annual Change Traffic (ACT). Boehm defined ACT as the fraction of a software

product’s source instructions which undergo change during a typical year either through addition

or deletion.

ACT = KLOC added + KLOC deleted

KLOCtotal

where, KLOCadded is the total kilo lines of source code added during maintenance.

KLOCdeleted is the total kilo lines of source code deleted during maintenance.

Thus, the code that is changed, should be counted in both the code added and the code deleted.

The annual change traffic (ACT) is multiplied with the total development cost to arrive at the

maintenance cost:

maintenance cost = ACT × development cost.

Most maintenance cost estimation models, however, yield only approximate results because they

do not take into account several factors such as experience level of the engineers, and familiarity

of the engineers with the product, hardware requirements, software complexity, etc.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 26

SOFTWARE RELIABILITY AND QUALITY MANAGEMENT

Repeatable vs. non-repeatable software development organization

A repeatable software development organization is one in which the software development

process is person-independent. In a non-repeatable software development organization, a

software development project becomes successful primarily due to the initiative, effort,

brilliance, or enthusiasm displayed by certain individuals. Thus, in a non-repeatable software

development organization, the chances of successful completion of a software project is to a

great extent depends on the team members.

Software Reliability

Reliability of a software product essentially denotes its trustworthiness or dependability.

Alternatively, reliability of a software product can also be defined as the probability of the

product working “correctly” over a given period of time.

It is obvious that a software product having a large number of defects is unreliable. It is also

clear that the reliability of a system improves, if the number of defects in it is reduced. However,

there is no simple relationship between the observed system reliability and the number of latent

defects in the system. For example, removing errors from parts of a software which are rarely

executed makes little difference to the perceived reliability of the product. It has been

experimentally observed by analyzing the behavior of a large number of programs that 90% of

the execution time of a typical program is spent in executing only 10% of the instructions in the

program. These most used 10% instructions are often called the core of the program. The rest

90% of the program statements are called non-core and are executed only for 10% of the total

execution time. It therefore may not be very surprising to note that removing 60% product

defects from the least used parts of a system would typically lead to only 3% improvement to the

product reliability. It is clear that the quantity by which the overall reliability of a program

improves due to the correction of a single error depends on how frequently the corresponding

instruction is executed.

Thus, reliability of a product depends not only on the number of latent errors but also on the

exact location of the errors. Apart from this, reliability also depends upon how the product is

used, i.e. on its execution profile. If it is selected input data to the system such that only the

“correctly” implemented functions are executed, none of the errors will be exposed and the

perceived reliability of the product will be high. On the other hand, if the input data is selected

such that only those functions which contain errors are invoked, the perceived reliability of the

system will be very low.

 DEPT OF CSE & IT

 VSSUT, Burla

Reasons for software reliability being difficult to measure

The reasons why software reliability is difficult to measure can be summarized as

follows:

 The reliability improvement due to fixing a single bug depends on where the bug is

located in the code.

 The perceived reliability of a software product is highly observer-dependent.

 The reliability of a product keeps changing as errors are detected and fixed.

 Hardware reliability vs. software reliability differs.

Reliability behavior for hardware and software are very different. For example, hardware failures

are inherently different from software failures. Most hardware failures are due to component

wear and tear. A logic gate may be stuck at 1 or 0, or a resistor might short circuit. To fix

hardware faults, one has to either replace or repair the failed part. On the other hand, a software

product would continue to fail until the error is tracked down and either the design or the code is

changed. For this reason, when a hardware is repaired its reliability is maintained at the level that

existed before the failure occurred; whereas when a software failure is repaired, the reliability

may either increase or decrease (reliability may decrease if a bug introduces new errors). To put

this fact in a different perspective, hardware reliability study is concerned with stability (for

example, inter-failure times remain constant). On the other hand, software reliability study aims

at reliability growth (i.e. inter-failure times increase). The change of failure rate over the product

lifetime for a typical hardware and a software product are sketched in fig. 26.1. For hardware

products, it can be observed that failure rate is high initially but decreases as the faulty

components are identified and removed. The system then enters its useful life. After some time

(called product life time) the components wear out, and the failure rate increases. This gives the

plot of hardware reliability over time its characteristics “bath tub” shape. On the other hand, for

software the failure rate is at it’s highest during integration and test. As the system is tested,

more and more errors are identified and removed resulting in reduced failure rate. This error

removal continues at a slower pace during the useful life of the product. As the software

becomes obsolete no error corrections occurs and the failure rate remains unchanged.

 DEPT OF CSE & IT

 VSSUT, Burla

(a) Hardware product

(b) Software product

Fig. 26.1: Change in failure rate of a product

Reliability Metrics

The reliability requirements for different categories of software products may be different. For

this reason, it is necessary that the level of reliability required for a software product should be

specified in the SRS (software requirements specification) document. In order to be able to do

this, some metrics are needed to quantitatively express the reliability of a software product. A

good reliability measure should be observer-dependent, so that different people can agree on the

degree of reliability a system has. For example, there are precise techniques for measuring

performance, which would result in obtaining the same performance value irrespective of who is

carrying out the performance measurement. However, in practice, it is very difficult to formulate

a precise reliability measurement technique. The next base case is to have measures that correlate

 DEPT OF CSE & IT

 VSSUT, Burla

with reliability. There are six reliability metrics which can be used to quantify the reliability of

software products.

 Rate of occurrence of failure (ROCOF)- ROCOF measures the frequency of

occurrence of unexpected behavior (i.e. failures). ROCOF measure of a software product

can be obtained by observing the behavior of a software product in operation over a

specified time interval and then recording the total number of failures occurring during

the interval.

 Mean Time To Failure (MTTF) - MTTF is the average time between two successive

failures, observed over a large number of failures. To measure MTTF, we can record the

failure data for n failures. Let the failures occur at the time instants t
1
, t

2
, …, t

n
. Then,

MTTF can be calculated as

It is important to note that only run time is considered in the time measurements, i.e. the

time for which the system is down to fix the error, the boot time, etc are not taken into

account in the time measurements and the clock is stopped at these times.

 Mean Time To Repair (MTTR) - Once failure occurs, sometime is required to fix the

error. MTTR measures the average time it takes to track the errors causing the failure and

to fix them.

 Mean Time Between Failure (MTBR) - MTTF and MTTR can be combined to get the

MTBR metric: MTBF = MTTF + MTTR. Thus, MTBF of 300 hours indicates that once a

failure occurs, the next failure is expected after 300 hours. In this case, time

measurements are real time and not the execution time as in MTTF.

 Probability of Failure on Demand (POFOD) - Unlike the other metrics discussed, this

metric does not explicitly involve time measurements. POFOD measures the likelihood

of the system failing when a service request is made. For example, a POFOD of 0.001

would mean that 1 out of every 1000 service requests would result in a failure.

 Availability- Availability of a system is a measure of how likely shall the system be

available for use over a given period of time. This metric not only considers the number

of failures occurring during a time interval, but also takes into account the repair time

(down time) of a system when a failure occurs. This metric is important for systems such

as telecommunication systems, and operating systems, which are supposed to be never

down and where repair and restart time are significant and loss of service during that time

is important.

 DEPT OF CSE & IT

 VSSUT, Burla

Classification of software failures

A possible classification of failures of software products into five different types is as follows:

 Transient- Transient failures occur only for certain input values while invoking a

function of the system.

 Permanent- Permanent failures occur for all input values while invoking a function of

the system.

 Recoverable- When recoverable failures occur, the system recovers with or without operator

intervention.

 Unrecoverable- In unrecoverable failures, the system may need to be restarted.

 Cosmetic- These classes of failures cause only minor irritations, and do not lead to

incorrect results. An example of a cosmetic failure is the case where the mouse button has

to be clicked twice instead of once to invoke a given function through the graphical user

interface.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 27

RELIABILITY GROWTH MODELS

A reliability growth model is a mathematical model of how software reliability improves as

errors are detected and repaired. A reliability growth model can be used to predict when (or if at

all) a particular level of reliability is likely to be attained. Thus, reliability growth modeling can

be used to determine when to stop testing to attain a given reliability level. Although several

different reliability growth models have been proposed, in this text we will discuss only two very

simple reliability growth models.

Jelinski and Moranda Model -The simplest reliability growth model is a step function model

where it is assumed that the reliability increases by a constant increment each time an error is

detected and repaired. Such a model is shown in fig. 27.1. However, this simple model of

reliability which implicitly assumes that all errors contribute equally to reliability growth, is

highly unrealistic since it is already known that correction of different types of errors contribute

differently to reliability growth.

.

Fig. 27.1: Step function model of reliability growth

Littlewood and Verall’s Model -This model allows for negative reliability growth to reflect the

fact that when a repair is carried out, it may introduce additional errors. It also models the fact

that as errors are repaired, the average improvement in reliability per repair decreases (Fig. 27.2).

It treat’s an error’s contribution to reliability improvement to be an independent random variable

having Gamma distribution. This distribution models the fact that error corrections with large

contributions to reliability growth are removed first. This represents diminishing return as test

continues.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 27.2: Random-step function model of reliability growth

Statistical Testing

Statistical testing is a testing process whose objective is to determine the reliability of software

products rather than discovering errors. Test cases are designed for statistical testing with an

entirely different objective than those of conventional testing.

Operation profile

Different categories of users may use a software for different purposes. For example, a Librarian

might use the library automation software to create member records, add books to the library,

etc. whereas a library member might use to software to query about the availability of the book,

or to issue and return books. Formally, the operation profile of a software can be defined as the

probability distribution of the input of an average user. If the input to a number of classes {Ci} is

divided, the probability value of a class represent the probability of an average user selecting his

next input from this class. Thus, the operation profile assigns a probability value Pi to each input

class Ci.

Steps in statistical testing

Statistical testing allows one to concentrate on testing those parts of the system that are most

likely to be used. The first step of statistical testing is to determine the operation profile of the

software. The next step is to generate a set of test data corresponding to the determined operation

profile. The third step is to apply the test cases to the software and record the time between each

 DEPT OF CSE & IT

 VSSUT, Burla

failure. After a statistically significant number of failures have been observed, the reliability can

be computed.

Advantages and disadvantages of statistical testing

Statistical testing allows one to concentrate on testing parts of the system that are most likely to

be used. Therefore, it results in a system that the users to be more reliable (than actually it is!).

Reliability estimation using statistical testing is more accurate compared to those of other

methods such as ROCOF, POFOD etc. But it is not easy to perform statistical testing properly.

There is no simple and repeatable way of defining operation profiles. Also it is very much

cumbersome to generate test cases for statistical testing because the number of test cases with

which the system is to be tested should be statistically significant.

 DEPT OF CSE & IT

 VSSUT, Burla

MODULE 4

LECTURE NOTE 28

SOFTWARE QUALITY

Traditionally, a quality product is defined in terms of its fitness of purpose. That is, a quality

product does exactly what the users want it to do. For software products, fitness of purpose is

usually interpreted in terms of satisfaction of the requirements laid down in the SRS document.

Although “fitness of purpose” is a satisfactory definition of quality for many products such as a

car, a table fan, a grinding machine, etc. – for software products, “fitness of purpose” is not a

wholly satisfactory definition of quality. To give an example, consider a software product that is

functionally correct. That is, it performs all functions as specified in the SRS document. But, has

an almost unusable user interface. Even though it may be functionally correct, we cannot

consider it to be a quality product. Another example may be that of a product which does

everything that the users want but has an almost incomprehensible and unmaintainable code.

Therefore, the traditional concept of quality as “fitness of purpose” for software products is not

wholly satisfactory.

The modern view of a quality associates with a software product several quality factors such as

the following:

 Portability: A software product is said to be portable, if it can be easily made to work in

different operating system environments, in different machines, with other software

products, etc.

 Usability: A software product has good usability, if different categories of users (i.e. both

expert and novice users) can easily invoke the functions of the product.

 Reusability: A software product has good reusability, if different modules of the product

can easily be reused to develop new products.

 Correctness: A software product is correct, if different requirements as specified in the

SRS document have been correctly implemented.

 Maintainability: A software product is maintainable, if errors can be easily corrected as

and when they show up, new functions can be easily added to the product, and the

functionalities of the product can be easily modified, etc.

Software Quality Management System

A quality management system (often referred to as quality system) is the principal methodology

used by organizations to ensure that the products they develop have the desired quality.

 DEPT OF CSE & IT

 VSSUT, Burla

A quality system consists of the following:

Managerial Structure and Individual Responsibilities- A quality system is actually the

responsibility of the organization as a whole. However, every organization has a separate quality

department to perform several quality system activities. The quality system of an organization

should have support of the top management. Without support for the quality system at a high

level in a company, few members of staff will take the quality system seriously.

Quality System Activities- The quality system activities encompass the following:

- auditing of projects

- review of the quality system

- development of standards, procedures, and guidelines, etc.

- production of reports for the top management summarizing the effectiveness of the

quality system in the organization.

Evolution of Quality Management System

Quality systems have rapidly evolved over the last five decades. Prior to World War II, the usual

method to produce quality products was to inspect the finished products to eliminate defective

products. Since that time, quality systems of organizations have undergone through four stages

of evolution as shown in the fig. 28.1. The initial product inspection method gave way to quality

control (QC). Quality control focuses not only on detecting the defective products and

eliminating them but also on determining the causes behind the defects. Thus, quality control

aims at correcting the causes of errors and not just rejecting the products. The next breakthrough

in quality systems was the development of quality assurance principles.

The basic premise of modern quality assurance is that if an organization’s processes are good

and are followed rigorously, then the products are bound to be of good quality. The modern

quality paradigm includes guidance for recognizing, defining, analyzing, and improving the

production process. Total quality management (TQM) advocates that the process followed by an

organization must be continuously improved through process measurements. TQM goes a step

further than quality assurance and aims at continuous process improvement. TQM goes beyond

documenting processes to optimizing them through redesign. A term related to TQM is Business

Process Reengineering (BPR). BPR aims at reengineering the way business is carried out in an

organization. From the above discussion it can be stated that over the years the quality paradigm

has shifted from product assurance to process assurance (as shown in fig. 28.1).

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 28.1: Evolution of quality system and corresponding shift in the quality paradigm

ISO 9000 certification

ISO (International Standards Organization) is a consortium of 63 countries established to

formulate and foster standardization. ISO published its 9000 series of standards in 1987. ISO

certification serves as a reference for contract between independent parties. The ISO 9000

standard specifies the guidelines for maintaining a quality system. We have already seen that the

quality system of an organization applies to all activities related to its product or service. The

ISO standard mainly addresses operational aspects and organizational aspects such as

responsibilities, reporting, etc. In a nutshell, ISO 9000 specifies a set of guidelines for repeatable

and high quality product development. It is important to realize that ISO 9000 standard is a set of

guidelines for the production process and is not directly concerned about the product itself.

Types of ISO 9000 quality standards

ISO 9000 is a series of three standards: ISO 9001, ISO 9002, and ISO 9003. The ISO 9000 series

of standards is based on the premise that if a proper process is followed for production, then

good quality products are bound to follow automatically. The types of industries to which the

different ISO standards apply are as follows.

ISO 9001 applies to the organizations engaged in design, development, production, and servicing

of goods. This is the standard that is applicable to most software development organizations.

 DEPT OF CSE & IT

 VSSUT, Burla

ISO 9002 applies to those organizations which do not design products but are only involved in

production. Examples of these category industries include steel and car manufacturing industries

that buy the product and plant designs from external sources and are involved in only

manufacturing those products. Therefore, ISO 9002 is not applicable to software development

organizations.

ISO 9003 applies to organizations that are involved only in installation and testing of the

products.

Software products vs. other products

There are mainly two differences between software products and any other type of products.

 Software is intangible in nature and therefore difficult to control. It is very difficult to

control and manage anything that is not seen. In contrast, any other industries such as car

manufacturing industries where one can see a product being developed through various

stages such as fitting engine, fitting doors, etc. Therefore, it is easy to accurately

determine how much work has been completed and to estimate how much more time will

it take.

 During software development, the only raw material consumed is data. In contrast, large

quantities of raw materials are consumed during the development of any other product.

Need for obtaining ISO 9000 certification

There is a mad scramble among software development organizations for obtaining ISO

certification due to the benefits it offers. Some benefits that can be acquired to organizations by

obtaining ISO certification are as follows:

 Confidence of customers in an organization increases when organization qualifies for

ISO certification. This is especially true in the international market. In fact, many

organizations awarding international software development contracts insist that the

development organization have ISO 9000 certification. For this reason, it is vital for

software organizations involved in software export to obtain ISO 9000 certification.

 ISO 9000 requires a well-documented software production process to be in place. A well-

documented software production process contributes to repeatable and higher quality of

the developed software.

 ISO 9000 makes the development process focused, efficient, and cost-effective.

 ISO 9000 certification points out the weak points of an organization and recommends

remedial action.

 ISO 9000 sets the basic framework for the development of an optimal process and Total

Quality Management (TQM).

 DEPT OF CSE & IT

 VSSUT, Burla

Summary of ISO 9001 certification

A summary of the main requirements of ISO 9001 as they relate of software development is as

follows. Section numbers in brackets correspond to those in the standard itself:

Management Responsibility (4.1)

 The management must have an effective quality policy.

 The responsibility and authority of all those whose work affects quality must be defined

and documented.

 A management representative, independent of the development process, must be

responsible for the quality system. This requirement probably has been put down so that

the person responsible for the quality system can work in an unbiased manner.

 The effectiveness of the quality system must be periodically reviewed by audits.

Quality System (4.2)

A quality system must be maintained and documented.

Contract Reviews (4.3)

Before entering into a contract, an organization must review the contract to ensure that it is

understood, and that the organization has the necessary capability for carrying out its obligations.

Design Control (4.4)

 The design process must be properly controlled, this includes controlling coding also.

This requirement means that a good configuration control system must be in place.

 Design inputs must be verified as adequate.

 Design must be verified.

 Design output must be of required quality.

 Design changes must be controlled.

Document Control (4.5)

 There must be proper procedures for document approval, issue and removal.

 Document changes must be controlled. Thus, use of some configuration management

tools is necessary.

Purchasing (4.6)

Purchasing material, including bought-in software must be checked for conforming to

requirements.

Purchaser Supplied Product (4.7)

Material supplied by a purchaser, for example, client-provided software must be properly

managed and checked.

 DEPT OF CSE & IT

 VSSUT, Burla

Product Identification (4.8)

The product must be identifiable at all stages of the process. In software terms this means

configuration management.

Process Control (4.9)

 The development must be properly managed.

 Quality requirement must be identified in a quality plan.

Inspection and Testing (4.10)

In software terms this requires effective testing i.e., unit testing, integration testing and system

testing. Test records must be maintained.

Inspection, Measuring and Test Equipment (4.11)

If integration, measuring, and test equipments are used, they must be properly maintained and

calibrated.

Inspection and Test Status (4.12)

The status of an item must be identified. In software terms this implies configuration

management and release control.

Control of Nonconforming Product (4.13)

In software terms, this means keeping untested or faulty software out of the released product, or

other places whether it might cause damage.

Corrective Action (4.14)

This requirement is both about correcting errors when found, and also investigating why the

errors occurred and improving the process to prevent occurrences. If an error occurs despite the

quality system, the system needs improvement.

Handling, (4.15)

This clause deals with the storage, packing, and delivery of the software product.

Quality records (4.16)

Recording the steps taken to control the quality of the process is essential in order to be able to

confirm that they have actually taken place.

Quality Audits (4.17)

Audits of the quality system must be carried out to ensure that it is effective.

 DEPT OF CSE & IT

 VSSUT, Burla

Training (4.18)

Training needs must be identified and met.

Salient features of ISO 9001 certification

The salient features of ISO 9001 are as follows:

 All documents concerned with the development of a software product should be properly

managed, authorized, and controlled. This requires a configuration management system

to be in place.

 Proper plans should be prepared and then progress against these plans should be

monitored.

 Important documents should be independently checked and reviewed for effectiveness

and correctness.

 The product should be tested against specification.

 Several organizational aspects should be addressed e.g., management reporting of the

quality team.

Shortcomings of ISO 9000 certification

Even though ISO 9000 aims at setting up an effective quality system in an organization, it suffers

from several shortcomings. Some of these shortcomings of the ISO 9000 certification process are

the following:

 ISO 9000 requires a software production process to be adhered to but does not guarantee

the process to be of high quality. It also does not give any guideline for defining an

appropriate process.

 ISO 9000 certification process is not fool-proof and no international accreditation agency

exists. Therefore it is likely that variations in the norms of awarding certificates can exist

among the different accreditation agencies and also among the registrars.

 Organizations getting ISO 9000 certification often tend to downplay domain expertise.

These organizations start to believe that since a good process is in place, any engineer is

as effective as any other engineer in doing any particular activity relating to software

development. However, many areas of software development are so specialized that

special expertise and experience in these areas (domain expertise) is required. In

manufacturing industry there is a clear link between process quality and product quality.

Once a process is calibrated, it can be run again and again producing quality goods. In

contrast, software development is a creative process and individual skills and experience

are important.

 ISO 9000 does not automatically lead to continuous process improvement, i.e. does not

automatically lead to TQM.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 29

SEI CAPABILITY MATURITY MODEL

SEI Capability Maturity Model (SEI CMM) helped organizations to improve the quality of the

software they develop and therefore adoption of SEI CMM model has significant business

benefits.

SEI CMM can be used two ways: capability evaluation and software process assessment.

Capability evaluation and software process assessment differ in motivation, objective, and the

final use of the result. Capability evaluation provides a way to assess the software process

capability of an organization. The results of capability evaluation indicates the likely contractor

performance if the contractor is awarded a work. Therefore, the results of software process

capability assessment can be used to select a contractor. On the other hand, software process

assessment is used by an organization with the objective to improve its process capability. Thus,

this type of assessment is for purely internal use.

SEI CMM classifies software development industries into the following five maturity levels. The

different levels of SEI CMM have been designed so that it is easy for an organization to slowly

build its quality system starting from scratch.

Level 1: Initial - A software development organization at this level is characterized by ad hoc

activities. Very few or no processes are defined and followed. Since software production

processes are not defined, different engineers follow their own process and as a result

development efforts become chaotic. Therefore, it is also called chaotic level. The success of

projects depends on individual efforts and heroics. When engineers leave, the successors have

great difficulty in understanding the process followed and the work completed. Since formal

project management practices are not followed, under time pressure short cuts are tried out

leading to low quality.

Level 2: Repeatable - At this level, the basic project management practices such as tracking cost

and schedule are established. Size and cost estimation techniques like function point analysis,

COCOMO, etc. are used. The necessary process discipline is in place to repeat earlier success on

projects with similar applications. Please remember that opportunity to repeat a process exists

only when a company produces a family of products.

Level 3: Defined - At this level the processes for both management and development activities

are defined and documented. There is a common organization-wide understanding of activities,

roles, and responsibilities. The processes though defined, the process and product qualities are

not measured. ISO 9000 aims at achieving this level.

 DEPT OF CSE & IT

 VSSUT, Burla

Level 4: Managed - At this level, the focus is on software metrics. Two types of metrics are

collected. Product metrics measure the characteristics of the product being developed, such as its

size, reliability, time complexity, understandability, etc. Process metrics reflect the effectiveness

of the process being used, such as average defect correction time, productivity, average number

of defects found per hour inspection, average number of failures detected during testing per

LOC, etc. Quantitative quality goals are set for the products. The software process and product

quality are measured and quantitative quality requirements for the product are met. Various tools

like Pareto charts, fishbone diagrams, etc. are used to measure the product and process quality.

The process metrics are used to check if a project performed satisfactorily. Thus, the results of

process measurements are used to evaluate project performance rather than improve the process.

Level 5: Optimizing - At this stage, process and product metrics are collected. Process and

product measurement data are analyzed for continuous process improvement. For example, if

from an analysis of the process measurement results, it was found that the code reviews were not

very effective and a large number of errors were detected only during the unit testing, then the

process may be fine-tuned to make the review more effective. Also, the lessons learned from

specific projects are incorporated in to the process. Continuous process improvement is achieved

both by carefully analyzing the quantitative feedback from the process measurements and also

from application of innovative ideas and technologies. Such an organization identifies the best

software engineering practices and innovations which may be tools, methods, or processes.

These best practices are transferred throughout the organization.

Key process areas (KPA) of a software organization

Except for SEI CMM level 1, each maturity level is characterized by several Key Process Areas

(KPAs) that includes the areas an organization should focus to improve its software process to

the next level. The focus of each level and the corresponding key process areas are shown in the

fig. 29.1.

 DEPT OF CSE & IT

 VSSUT, Burla

CMM Level Focus Key Process Ares

1. Initial Competent people

2. Repeatable Project management Software project planning

Software configuration management

3. Defined Definition of processes Process definition

Training program

Peer reviews

4. Managed Product and process

quality

Quantitative process metrics

Software quality management

5. Optimizing Continuous process

improvement

Defect prevention

Process change management

Technology change management

Fig. 29.1: The focus of each SEI CMM level and the corresponding key process areas

SEI CMM provides a list of key areas on which to focus to take an organization from one level

of maturity to the next. Thus, it provides a way for gradual quality improvement over several

stages. Each stage has been carefully designed such that one stage enhances the capability

already built up. For example, it considers that trying to implement a defined process (SEI CMM

level 3) before a repeatable process (SEI CMM level 2) would be counterproductive as it

becomes difficult to follow the defined process due to schedule and budget pressures. ISO 9000

certification vs. SEI/CMM

For quality appraisal of a software development organization, the characteristics of ISO 9000

certification and the SEI CMM differ in some respects. The differences are as follows:

 ISO 9000 is awarded by an international standards body. Therefore, ISO 9000

certification can be quoted by an organization in official documents, communication with

external parties, and the tender quotations. However, SEI CMM assessment is purely for

internal use.

 SEI CMM was developed specifically for software industry and therefore addresses many

issues which are specific to software industry alone.

 SEI CMM goes beyond quality assurance and prepares an organization to ultimately

achieve Total Quality Management (TQM). In fact, ISO 9001 aims at level 3 of SEI

CMM model.

 SEI CMM model provides a list of key process areas (KPAs) on which an organization at

any maturity level needs to concentrate to take it from one maturity level to the next.

Thus, it provides a way for achieving gradual quality improvement.

 DEPT OF CSE & IT

 VSSUT, Burla

Applicability of SEI CMM to organizations

Highly systematic and measured approach to software development suits large organizations

dealing with negotiated software, safety-critical software, etc. For those large organizations, SEI

CMM model is perfectly applicable. But small organizations typically handle applications such

as Internet, e-commerce, and are without an established product range, revenue base, and

experience on past projects, etc. For such organizations, a CMM-based appraisal is probably

excessive. These organizations need to operate more efficiently at the lower levels of maturity.

For example, they need to practice effective project management, reviews, configuration

management, etc.

Personal Software Process

Personal Software Process (PSP) is a scaled down version of the industrial software process. PSP

is suitable for individual use. It is important to note that SEI CMM does not tell software

developers how to analyze, design, code, test, or document software products, but assumes that

engineers use effective personal practices. PSP recognizes that the process for individual use is

different from that necessary for a team.

The quality and productivity of an engineer is to a great extent dependent on his process. PSP is

a framework that helps engineers to measure and improve the way they work. It helps in

developing personal skills and methods by estimating and planning, by showing how to track

performance against plans, and provides a defined process which can be tuned by individuals.

Time measurement- PSP advocates that engineers should rack the way they spend time.

Because, boring activities seem longer than actual and interesting activities seem short.

Therefore, the actual time spent on a task should be measured with the help of a stop-clock to get

an objective picture of the time spent. For example, he may stop the clock when attending a

telephone call, taking a coffee break etc. An engineer should measure the time he spends for

designing, writing code, testing, etc.

PSP Planning- Individuals must plan their project. They must estimate the maximum, minimum,

and the average LOC required for the product. They should use their productivity in

minutes/LOC to calculate the maximum, minimum, and the average development time. They

must record the plan data in a project plan summary.

The PSP is schematically shown in fig. 29.2. While carrying out the different phases, they must

record the log data using time measurement. During post-mortem, they can compare the log data

with their project plan to achieve better planning in the future projects, to improve their process,

etc.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 29.2: Schematic representation of PSP

The PSP levels are summarized in fig. 29.3.

Fig. 29.3: Levels of PSP

 DEPT OF CSE & IT

 VSSUT, Burla

PSP2 introduces defect management via the use of checklists for code and design reviews. The

checklists are developed from gathering and analyzing defect data earlier projects.

Six Sigma

The purpose of Six Sigma is to improve processes to do things better, faster, and at lower cost. It

can be used to improve every facet of business, from production, to human resources, to order

entry, to technical support. Six Sigma can be used for any activity that is concerned with cost,

timeliness, and quality of results. Therefore, it is applicable to virtually every industry.

Six Sigma at many organizations simply means striving for near perfection. Six Sigma is a

disciplined, data-driven approach to eliminate defects in any process – from manufacturing to

transactional and product to service.

The statistical representation of Six Sigma describes quantitatively how a process is performing.

To achieve Six Sigma, a process must not produce more than 3.4 defects per million

opportunities. A Six Sigma defect is defined as any system behavior that is not as per customer

specifications. Total number of Six Sigma opportunities is then the total number of chances for a

defect. Process sigma can easily be calculated using a Six Sigma calculator.

The fundamental objective of the Six Sigma methodology is the implementation of a

measurement-based strategy that focuses on process improvement and variation reduction

through the application of Six Sigma improvement projects. This is accomplished through the

use of two Six Sigma sub-methodologies: DMAIC and DMADV. The Six Sigma DMAIC

process (define, measure, analyze, improve, control) is an improvement system for existing

processes failing below specification and looking for incremental improvement. The Six Sigma

DMADV process (define, measure, analyze, design, verify) is an improvement system used to

develop new processes or products at Six Sigma quality levels. It can also be employed if a

current process requires more than just incremental improvement. Both Six Sigma processes are

executed by Six Sigma Green Belts and Six Sigma Black Belts, and are overseen by Six Sigma

Master Black Belts.

Many frameworks exist for implementing the Six Sigma methodology. Six Sigma Consultants

all over the world have also developed proprietary methodologies for implementing Six Sigma

quality, based on the similar change management philosophies and applications of tools.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 30

SOFTWARE PROJECT PLANNING

Project Planning and Project Estimation Techniques

Responsibilities of a software project manager

Software project managers take the overall responsibility of steering a project to success. It is

very difficult to objectively describe the job responsibilities of a project manager. The job

responsibility of a project manager ranges from invisible activities like building up team morale

to highly visible customer presentations. Most managers take responsibility for project proposal

writing, project cost estimation, scheduling, project staffing, software process tailoring, project

monitoring and control, software configuration management, risk management, interfacing with

clients, managerial report writing and presentations, etc. These activities are certainly numerous,

varied and difficult to enumerate, but these activities can be broadly classified into project

planning, and project monitoring and control activities. The project planning activity is

undertaken before the development starts to plan the activities to be undertaken during

development. The project monitoring and control activities are undertaken once the development

activities start with the aim of ensuring that the development proceeds as per plan and changing

the plan whenever required to cope up with the situation.

Skills necessary for software project management

A theoretical knowledge of different project management techniques is certainly necessary to

become a successful project manager. However, effective software project management

frequently calls for good qualitative judgment and decision taking capabilities. In addition to

having a good grasp of the latest software project management techniques such as cost

estimation, risk management, configuration management, project managers need good

communication skills and the ability get work done. However, some skills such as tracking and

controlling the progress of the project, customer interaction, managerial presentations, and team

building are largely acquired through experience. None the less, the importance of sound

knowledge of the prevalent project management techniques cannot be overemphasized.

Project Planning

Once a project is found to be feasible, software project managers undertake project planning.

Project planning is undertaken and completed even before any development activity starts.

Project planning consists of the following essential activities:

 Estimating the following attributes of the project:

 Project size: What will be problem complexity in terms of the effort and time

required to develop the product?

 Cost: How much is it going to cost to develop the project?

 DEPT OF CSE & IT

 VSSUT, Burla

 Duration: How long is it going to take to complete development?

 Effort: How much effort would be required?

The effectiveness of the subsequent planning activities is based on the accuracy of these

estimations.

 Scheduling manpower and other resources.

 Staff organization and staffing plans.

 Risk identification, analysis, and abatement planning

 Miscellaneous plans such as quality assurance plan, configuration management plan, etc.

Precedence ordering among project planning activities

Different project related estimates done by a project manager have already been discussed. Fig.

30.1 shows the order in which important project planning activities may be undertaken. From

fig. 30.1 it can be easily observed that size estimation is the first activity. It is also the most

fundamental parameter based on which all other planning activities are carried out. Other

estimations such as estimation of effort, cost, resource, and project duration are also very

important components of project planning.

Fig. 30.1: Precedence ordering among planning activities

Sliding Window Planning

Project planning requires utmost care and attention since commitment to unrealistic time and

resource estimates result in schedule slippage. Schedule delays can cause customer

dissatisfaction and adversely affect team morale. It can even cause project failure. However,

 DEPT OF CSE & IT

 VSSUT, Burla

project planning is a very challenging activity. Especially for large projects, it is very much

difficult to make accurate plans. A part of this difficulty is due to the fact that the proper

parameters, scope of the project, project staff, etc. may change during the span of the project. In

order to overcome this problem, sometimes project managers undertake project planning in

stages. Planning a project over a number of stages protects managers from making big

commitments too early. This technique of staggered planning is known as Sliding Window

Planning. In the sliding window technique, starting with an initial plan, the project is planned

more accurately in successive development stages. At the start of a project, project managers

have incomplete knowledge about the details of the project. Their information base gradually

improves as the project progresses through different phases. After the completion of every phase,

the project managers can plan each subsequent phase more accurately and with increasing levels

of confidence.

Software Project Management Plan (SPMP)

Once project planning is complete, project managers document their plans in a Software Project

Management Plan (SPMP) document. The SPMP document should discuss a list of different

items that have been discussed below. This list can be used as a possible organization of the

SPMP document.

Organization of the Software Project Management Plan (SPMP) Document

1. Introduction

(a) Objectives

(b) Major Functions

(c) Performance Issues

(d) Management and Technical Constraints

2. Project Estimates

(a) Historical Data Used

(b) Estimation Techniques Used

(c) Effort, Resource, Cost, and Project Duration Estimates

3. Schedule

(a) Work Breakdown Structure

(b) Task Network Representation

(c) Gantt Chart Representation

(d) PERT Chart Representation

 DEPT OF CSE & IT

 VSSUT, Burla

4. Project Resources

(a) People

(b) Hardware and Software

(c) Special Resources

5. Staff Organization

(a) Team Structure

(b) Management Reporting

6. Risk Management Plan

(a) Risk Analysis

(b) Risk Identification

(c) Risk Estimation

(d) Risk Abatement Procedures

7. Project Tracking and Control Plan

8. Miscellaneous Plans

(a) Process Tailoring

(b) Quality Assurance Plan

(c) Configuration Management Plan

(d) Validation and Verification

(e) System Testing Plan

(f) Delivery, Installation, and Maintenance Plan

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 31

METRICS FOR SOFTWARE PROJECT SIZE ESTIMATION

Accurate estimation of the problem size is fundamental to satisfactory estimation of effort, time

duration and cost of a software project. In order to be able to accurately estimate the project size,

some important metrics should be defined in terms of which the project size can be expressed.

The size of a problem is obviously not the number of bytes that the source code occupies. It is

neither the byte size of the executable code. The project size is a measure of the problem

complexity in terms of the effort and time required to develop the product.

Currently two metrics are popularly being used widely to estimate size: lines of code (LOC) and

function point (FP). The usage of each of these metrics in project size estimation has its own

advantages and disadvantages.

Lines of Code (LOC)

LOC is the simplest among all metrics available to estimate project size. This metric is very

popular because it is the simplest to use. Using this metric, the project size is estimated by

counting the number of source instructions in the developed program. Obviously, while counting

the number of source instructions, lines used for commenting the code and the header lines

should be ignored.

Determining the LOC count at the end of a project is a very simple job. However, accurate

estimation of the LOC count at the beginning of a project is very difficult. In order to estimate

the LOC count at the beginning of a project, project managers usually divide the problem into

modules, and each module into submodules and so on, until the sizes of the different leaf-level

modules can be approximately predicted. To be able to do this, past experience in developing

similar products is helpful. By using the estimation of the lowest level modules, project

managers arrive at the total size estimation.

Function point (FP)

Function point metric was proposed by Albrecht [1983]. This metric overcomes many of the

shortcomings of the LOC metric. Since its inception in late 1970s, function point metric has been

slowly gaining popularity. One of the important advantages of using the function point metric is

that it can be used to easily estimate the size of a software product directly from the problem

specification. This is in contrast to the LOC metric, where the size can be accurately determined

only after the product has fully been developed. The conceptual idea behind the function point

metric is that the size of a software product is directly dependent on the number of different

functions or features it supports. A software product supporting many features would certainly be

of larger size than a product with less number of features. Each function when invoked reads

 DEPT OF CSE & IT

 VSSUT, Burla

some input data and transforms it to the corresponding output data. For example, the issue book

feature (as shown in fig. 31.1) of a Library Automation Software takes the name of the book as

input and displays its location and the number of copies available. Thus, a computation of the

number of input and the output data values to a system gives some indication of the number of

functions supported by the system. Albrecht postulated that in addition to the number of basic

functions that a software performs, the size is also dependent on the number of files and the

number of interfaces.

Fig. 31.1: System function as a map of input data to output data

Besides using the number of input and output data values, function point metric computes the

size of a software product (in units of functions points or FPs) using three other characteristics of

the product as shown in the following expression. The size of a product in function points (FP)

can be expressed as the weighted sum of these five problem characteristics. The weights

associated with the five characteristics were proposed empirically and validated by the

observations over many projects. Function point is computed in two steps. The first step is to

compute the unadjusted function point (UFP).

UFP = (Number of inputs)*4 + (Number of outputs)*5 + (Number of inquiries)*4 +

(Number of files)*10 + (Number of interfaces)*10

Number of inputs: Each data item input by the user is counted. Data inputs should be

distinguished from user inquiries. Inquiries are user commands such as print-account-balance.

 DEPT OF CSE & IT

 VSSUT, Burla

Inquiries are counted separately. It must be noted that individual data items input by the user are

not considered in the calculation of the number of inputs, but a group of related inputs are

considered as a single input. For example, while entering the data concerning an employee to an

employee pay roll software; the data items name, age, sex, address, phone number, etc. are

together considered as a single input. All these data items can be considered to be related, since

they pertain to a single employee.

Number of outputs: The outputs considered refer to reports printed, screen outputs, error

messages produced, etc. While outputting the number of outputs the individual data items within

a report are not considered, but a set of related data items is counted as one input.

Number of inquiries: Number of inquiries is the number of distinct interactive queries which

can be made by the users. These inquiries are the user commands which require specific action

by the system.

Number of files: Each logical file is counted. A logical file means groups of logically related

data. Thus, logical files can be data structures or physical files.

Number of interfaces: Here the interfaces considered are the interfaces used to exchange

information with other systems. Examples of such interfaces are data files on tapes, disks,

communication links with other systems etc.

Once the unadjusted function point (UFP) is computed, the technical complexity factor (TCF) is

computed next. TCF refines the UFP measure by considering fourteen other factors such as high

transaction rates, throughput, and response time requirements, etc. Each of these 14 factors is

assigned from 0 (not present or no influence) to 6 (strong influence). The resulting numbers are

summed, yielding the total degree of influence (DI). Now, TCF is computed as (0.65+0.01*DI).

As DI can vary from 0 to 70, TCF can vary from 0.65 to 1.35. Finally, FP=UFP*TCF.

Shortcomings of function point (FP) metric

LOC as a measure of problem size has several shortcomings:

 LOC gives a numerical value of problem size that can vary widely with individual coding

style – different programmers lay out their code in different ways. For example, one

programmer might write several source instructions on a single line whereas another

might split a single instruction across several lines. Of course, this problem can be easily

overcome by counting the language tokens in the program rather than the lines of code.

However, a more intricate problem arises because the length of a program depends on the

choice of instructions used in writing the program. Therefore, even for the same problem,

different programmers might come up with programs having different LOC counts. This

situation does not improve even if language tokens are counted instead of lines of code.

 DEPT OF CSE & IT

 VSSUT, Burla

 A good problem size measure should consider the overall complexity of the problem and

the effort needed to solve it. That is, it should consider the local effort needed to specify,

design, code, test, etc. and not just the coding effort. LOC, however, focuses on the

coding activity alone; it merely computes the number of source lines in the final program.

We have already seen that coding is only a small part of the overall software

development activities. It is also wrong to argue that the overall product development

effort is proportional to the effort required in writing the program code. This is because

even though the design might be very complex, the code might be straightforward and

vice versa. In such cases, code size is a grossly improper indicator of the problem size.

 LOC measure correlates poorly with the quality and efficiency of the code. Larger code

size does not necessarily imply better quality or higher efficiency. Some programmers

produce lengthy and complicated code as they do not make effective use of the available

instruction set. In fact, it is very likely that a poor and sloppily written piece of code

might have larger number of source instructions than a piece that is neat and efficient.

 LOC metric penalizes use of higher-level programming languages, code reuse, etc. The

paradox is that if a programmer consciously uses several library routines, then the LOC

count will be lower. This would show up as smaller program size. Thus, if managers use

the LOC count as a measure of the effort put in the different engineers (that is,

productivity), they would be discouraging code reuse by engineers.

 LOC metric measures the lexical complexity of a program and does not address the more

important but subtle issues of logical or structural complexities. Between two programs

with equal LOC count, a program having complex logic would require much more effort

to develop than a program with very simple logic. To realize why this is so, consider the

effort required to develop a program having multiple nested loop and decision constructs

with another program having only sequential control flow.

 It is very difficult to accurately estimate LOC in the final product from the problem

specification. The LOC count can be accurately computed only after the code has been

fully developed. Therefore, the LOC metric is little use to the project managers during

project planning, since project planning is carried out even before any development

activity has started. This possibly is the biggest shortcoming of the LOC metric from the

project manager’s perspective.

Feature Point Metric

A major shortcoming of the function point measure is that it does not take into account the

algorithmic complexity of a software. That is, the function point metric implicitly assumes that

the effort required to design and develop any two functionalities of the system is the same. But,

we know that this is normally not true, the effort required to develop any two functionalities may

vary widely. It only takes the number of functions that the system supports into consideration

 DEPT OF CSE & IT

 VSSUT, Burla

without distinguishing the difficulty level of developing the various functionalities. To overcome

this problem, an extension of the function point metric called feature point metric is proposed.

Feature point metric incorporates an extra parameter algorithm complexity. This parameter

ensures that the computed size using the feature point metric reflects the fact that the more is the

complexity of a function, the greater is the effort required to develop it and therefore its size

should be larger compared to simpler functions.

Project Estimation Techniques

Estimation of various project parameters is a basic project planning activity. The important

project parameters that are estimated include: project size, effort required to develop the

software, project duration, and cost. These estimates not only help in quoting the project cost to

the customer, but are also useful in resource planning and scheduling. There are three broad

categories of estimation techniques:

• Empirical estimation techniques

• Heuristic techniques

• Analytical estimation techniques

Empirical Estimation Techniques

Empirical estimation techniques are based on making an educated guess of the project

parameters. While using this technique, prior experience with development of similar

products is helpful. Although empirical estimation techniques are based on common

sense, different activities involved in estimation have been formalized over the years.

Two popular empirical estimation techniques are: Expert judgment technique and

Delphi cost estimation.

Expert Judgment Technique

Expert judgment is one of the most widely used estimation techniques. In this approach,

an expert makes an educated guess of the problem size after analyzing the problem

thoroughly. Usually, the expert estimates the cost of the different components (i.e.

modules or subsystems) of the system and then combines them to arrive at the overall

estimate. However, this technique is subject to human errors and individual bias. Also, it

is possible that the expert may overlook some factors inadvertently. Further, an expert

making an estimate may not have experience and knowledge of all aspects of a project.

For example, he may be conversant with the database and user interface parts but may not

be very knowledgeable about the computer communication part.

A more refined form of expert judgment is the estimation made by group of experts.

Estimation by a group of experts minimizes factors such as individual oversight, lack of

familiarity with a particular aspect of a project, personal bias, and the desire to win

contract through overly optimistic estimates. However, the estimate made by a group of

 DEPT OF CSE & IT

 VSSUT, Burla

experts may still exhibit bias on issues where the entire group of experts may be biased

due to reasons such as political considerations. Also, the decision made by the group may

be dominated by overly assertive members.

Delphi Cost Estimation

Delphi cost estimation approach tries to overcome some of the shortcomings of the expert

judgment approach. Delphi estimation is carried out by a team comprising of a group of

experts and a coordinator. In this approach, the coordinator provides each estimator with

a copy of the software requirements specification (SRS) document and a form for

recording his cost estimate. Estimators complete their individual estimates anonymously

and submit to the coordinator. In their estimates, the estimators mention any unusual

characteristic of the product which has influenced his estimation. The coordinator

prepares and distributes the summary of the responses of all the estimators, and includes

any unusual rationale noted by any of the estimators. Based on this summary, the

estimators re-estimate. This process is iterated for several rounds. However, no

discussion among the estimators is allowed during the entire estimation process. The idea

behind this is that if any discussion is allowed among the estimators, then many

estimators may easily get influenced by the rationale of an estimator who may be more

experienced or senior. After the completion of several iterations of estimations, the

coordinator takes the responsibility of compiling the results and preparing the final

estimate.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 32

HEURISTIC TECHNIQUES

Heuristic techniques assume that the relationships among the different project parameters can be

modeled using suitable mathematical expressions. Once the basic (independent) parameters are

known, the other (dependent) parameters can be easily determined by substituting the value of

the basic parameters in the mathematical expression. Different heuristic estimation models can

be divided into the following two classes: single variable model and the multi variable model.

Single variable estimation models provide a means to estimate the desired characteristics of a

problem, using some previously estimated basic (independent) characteristic of the software

product such as its size. A single variable estimation model takes the following form:

Estimated Parameter = c
1

* e
d

1

In the above expression, e is the characteristic of the software which has already been estimated

(independent variable). Estimated Parameter is the dependent parameter to be estimated. The

dependent parameter to be estimated could be effort, project duration, staff size, etc. c
1

and d
1

are

constants. The values of the constants c
1

and d
1

are usually determined using data collected from

past projects (historical data). The basic COCOMO model is an example of single variable cost

estimation model.

A multivariable cost estimation model takes the following form:

Estimated Resource = c
1
*e

1

d

1
+ c

2
*e

2

d

2
+ ...

Where e
1
, e

2
, … are the basic (independent) characteristics of the software already estimated, and

c
1
, c

2
, d

1
, d

2
, … are constants. Multivariable estimation models are expected to give more

accurate estimates compared to the single variable models, since a project parameter is typically

influenced by several independent parameters. The independent parameters influence the

dependent parameter to different extents. This is modeled by the constants c
1
, c

2
, d

1
, d

2
, … .

Values of these constants are usually determined from historical data. The intermediate

COCOMO model can be considered to be an example of a multivariable estimation model.

Analytical Estimation Techniques

Analytical estimation techniques derive the required results starting with basic assumptions

regarding the project. Thus, unlike empirical and heuristic techniques, analytical techniques do

have scientific basis. Halstead’s software science is an example of an analytical technique.

Halstead’s software science can be used to derive some interesting results starting with a few

 DEPT OF CSE & IT

 VSSUT, Burla

simple assumptions. Halstead’s software science is especially useful for estimating software

maintenance efforts. In fact, it outperforms both empirical and heuristic techniques when used

for predicting software maintenance efforts.

Halstead’s Software Science – An Analytical Technique

Halstead’s software science is an analytical technique to measure size, development effort, and

development cost of software products. Halstead used a few primitive program parameters to

develop the expressions for overall program length, potential minimum value, actual volume,

effort, and development time.

For a given program, let:

 η
1

be the number of unique operators used in the program,

 η
2

be the number of unique operands used in the program,

 N
1

be the total number of operators used in the program,

 N
2

be the total number of operands used in the program.

Length and Vocabulary

The length of a program as defined by Halstead, quantifies total usage of all operators and

operands in the program. Thus, length N = N
1

+N
2
. Halstead’s definition of the length of the

program as the total number of operators and operands roughly agrees with the intuitive notation

of the program length as the total number of tokens used in the program.

The program vocabulary is the number of unique operators and operands used in the program.

Thus, program vocabulary η = η
1

+ η
2
.

Program Volume

The length of a program (i.e. the total number of operators and operands used in the code)

depends on the choice of the operators and operands used. In other words, for the same

programming problem, the length would depend on the programming style. This type of

dependency would produce different measures of length for essentially the same problem when

different programming languages are used. Thus, while expressing program size, the

programming language used must be taken into consideration:

V = Nlog
2
η

Here the program volume V is the minimum number of bits needed to encode the program. In

fact, to represent η different identifiers uniquely, at least log
2
η bits (where η is the program

vocabulary) will be needed. In this scheme, Nlog
2
η bits will be needed to store a program of

length N. Therefore, the volume V represents the size of the program by approximately

compensating for the effect of the programming language used.

 DEPT OF CSE & IT

 VSSUT, Burla

Potential Minimum Volume

The potential minimum volume V* is defined as the volume of most succinct program in which a

problem can be coded. The minimum volume is obtained when the program can be expressed

using a single source code instruction. say a function call like foo() ;. In other words, the volume

is bound from below due to the fact that a program would have at least two operators and no less

than the requisite number of operands.

Thus, if an algorithm operates on input and output data d
1
, d

2
, … d

n
, the most succinct program

would be f(d
1
, d

2
, … d

n
); for which η

1
= 2, η

2
= n. Therefore, V* = (2 + η

2
)log

2
(2 + η

2
).

The program level L is given by L = V*/V. The concept of program level L is introduced in an

attempt to measure the level of abstraction provided by the programming language. Using this

definition, languages can be ranked into levels that also appear intuitively correct.

The above result implies that the higher the level of a language, the less effort it takes to develop

a program using that language. This result agrees with the intuitive notion that it takes more

effort to develop a program in assembly language than to develop a program in a high-level

language to solve a problem.

Effort and Time

The effort required to develop a program can be obtained by dividing the program volume with

the level of the programming language used to develop the code. Thus, effort E = V/L, where E

is the number of mental discriminations required to implement the program and also the effort

required to read and understand the program. Thus, the programming effort E = V²/V* (since L =

V*/V) varies as the square of the volume. Experience shows that E is well correlated to the effort

needed for maintenance of an existing program.

The programmer’s time T = E/S, where S the speed of mental discriminations. The value of S

has been empirically developed from psychological reasoning, and its recommended value for

programming applications is 18.

Length Estimation

Even though the length of a program can be found by calculating the total number of operators

and operands in a program, Halstead suggests a way to determine the length of a program using

the number of unique operators and operands used in the program. Using this method, the

program parameters such as length, volume, cost, effort, etc. can be determined even before the

start of any programming activity. His method is summarized below.

 DEPT OF CSE & IT

 VSSUT, Burla

Halstead assumed that it is quite unlikely that a program has several identical parts – in formal

language terminology identical substrings – of length greater than η (η being the program

vocabulary). In fact, once a piece of code occurs identically at several places, it is made into a

procedure or a function. Thus, it can be assumed that any program of length N consists of N/ η

unique strings of length η. Now, it is standard combinatorial result that for any given alphabet of

size K, there are exactly K
r

different strings of length r.

Thus.

N/η ≤ η
η

Or, N ≤ η
η+1

Since operators and operands usually alternate in a program, the upper bound can be further

refined into N ≤ η η
1

η1

η
2

η2

. Also, N must include not only the ordered set of n elements, but it

should also include all possible subsets of that ordered sets, i.e. the power set of N strings (This

particular reasoning of Halstead is not very convincing!!!).

Therefore,

2
N

= η η
1

η1

η
2

η2

Or, taking logarithm on both sides,

N = log
2
η +log

2
(η

1

η1

η
2

η2

)

So we get,

N = log
2
(η

1

η1

η
2

η2

)

(approximately, by ignoring log
2
η)

Or,

N = log
2
η

1

η1

+ log
2
η

2

η2

 = η
1
log

2
η

1
+ η

2
log

2
η

2

Experimental evidence gathered from the analysis of larger number of programs suggests that the

computed and actual lengths match very closely. However, the results may be inaccurate when

small programs when considered individually.

In conclusion, Halstead’s theory tries to provide a formal definition and quantification of such

qualitative attributes as program complexity, ease of understanding, and the level of abstraction

based on some low-level parameters such as the number of operands, and operators appearing in

 DEPT OF CSE & IT

 VSSUT, Burla

the program. Halstead’s software science provides gross estimation of properties of a large

collection of software, but extends to individual cases rather inaccurately.

Example:

Let us consider the following C program:

main()

{

int a, b, c, avg;

scanf(“%d %d %d”, &a, &b, &c);

avg = (a+b+c)/3;

printf(“avg = %d”, avg);

}

The unique operators are:

main,(),{},int,scanf,&,“,”,“;”,=,+,/, printf

The unique operands are:

a, b, c, &a, &b, &c, a+b+c, avg, 3,

“%d %d %d”, “avg = %d”

Therefore,

η
1

= 12, η
2

= 11

Estimated Length = (12*log12 + 11*log11)

= (12*3.58 + 11*3.45)

= (43+38) = 81

Volume = Length*log(23)

 = 81*4.52

 = 366

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 33

COCOMO MODEL

Organic, Semidetached and Embedded software projects

Boehm postulated that any software development project can be classified into one of the

following three categories based on the development complexity: organic, semidetached, and

embedded. In order to classify a product into the identified categories, Boehm not only

considered the characteristics of the product but also those of the development team and

development environment. Roughly speaking, these three product classes correspond to

application, utility and system programs, respectively. Normally, data processing programs are

considered to be application programs. Compilers, linkers, etc., are utility programs. Operating

systems and real-time system programs, etc. are system programs. System programs interact

directly with the hardware and typically involve meeting timing constraints and concurrent

processing.

Boehm’s [1981] definition of organic, semidetached, and embedded systems are elaborated

below.

Organic: A development project can be considered of organic type, if the project deals with

developing a well understood application program, the size of the development team is

reasonably small, and the team members are experienced in developing similar types of projects.

Semidetached: A development project can be considered of semidetached type, if the

development consists of a mixture of experienced and inexperienced staff. Team members may

have limited experience on related systems but may be unfamiliar with some aspects of the

system being developed.

Embedded: A development project is considered to be of embedded type, if the software being

developed is strongly coupled to complex hardware, or if the stringent regulations on the

operational procedures exist.

COCOMO

COCOMO (Constructive Cost Estimation Model) was proposed by Boehm [1981]. According to

Boehm, software cost estimation should be done through three stages: Basic COCOMO,

Intermediate COCOMO, and Complete COCOMO.

 DEPT OF CSE & IT

 VSSUT, Burla

Basic COCOMO Model

The basic COCOMO model gives an approximate estimate of the project parameters. The basic

COCOMO estimation model is given by the following expressions:

Effort = a
1

х (KLOC)
a

2
PM

Tdev = b
1
x (Effort)

b

2
Months

Where

• KLOC is the estimated size of the software product expressed in Kilo Lines of

Code,

• a
1
, a

2
, b

1
, b

2
are constants for each category of software products,

• Tdev is the estimated time to develop the software, expressed in months,

• Effort is the total effort required to develop the software product, expressed in

person months (PMs).

The effort estimation is expressed in units of person-months (PM). It is the area under the

person-month plot (as shown in fig. 33.1). It should be carefully noted that an effort of 100 PM

does not imply that 100 persons should work for 1 month nor does it imply that 1 person should

be employed for 100 months, but it denotes the area under the person-month curve (as shown in

fig. 33.1).

Fig. 33.1: Person-month curve

 DEPT OF CSE & IT

 VSSUT, Burla

According to Boehm, every line of source text should be calculated as one LOC irrespective of

the actual number of instructions on that line. Thus, if a single instruction spans several lines (say

n lines), it is considered to be nLOC. The values of a
1
, a

2
, b

1
, b

2
for different categories of

products (i.e. organic, semidetached, and embedded) as given by Boehm [1981] are summarized

below. He derived the above expressions by examining historical data collected from a large

number of actual projects.

Estimation of development effort

For the three classes of software products, the formulas for estimating the effort based on the

code size are shown below:

Organic : Effort = 2.4(KLOC)
1.05

PM

Semi-detached : Effort = 3.0(KLOC)
1.12

PM

Embedded : Effort = 3.6(KLOC)
1.20

PM

Estimation of development time

For the three classes of software products, the formulas for estimating the development time

based on the effort are given below:

Organic : Tdev = 2.5(Effort)
0.38

Months

Semi-detached : Tdev = 2.5(Effort)
0.35

Months

Embedded : Tdev = 2.5(Effort)
0.32

Months

Some insight into the basic COCOMO model can be obtained by plotting the estimated

characteristics for different software sizes. Fig. 33.2 shows a plot of estimated effort versus

product size. From fig. 33.2, we can observe that the effort is somewhat super linear in the size

of the software product. Thus, the effort required to develop a product increases very rapidly

with project size.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 33.2: Effort versus product size

The development time versus the product size in KLOC is plotted in fig. 33.3. From fig. 33.3, it

can be observed that the development time is a sub linear function of the size of the product, i.e.

when the size of the product increases by two times, the time to develop the product does not

double but rises moderately. This can be explained by the fact that for larger products, a larger

number of activities which can be carried out concurrently can be identified. The parallel

activities can be carried out simultaneously by the engineers. This reduces the time to complete

the project. Further, from fig. 33.3, it can be observed that the development time is roughly the

same for all the three categories of products. For example, a 60 KLOC program can be

developed in approximately 18 months, regardless of whether it is of organic, semidetached, or

embedded type.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 33.3: Development time versus size

From the effort estimation, the project cost can be obtained by multiplying the required effort by

the manpower cost per month. But, implicit in this project cost computation is the assumption

that the entire project cost is incurred on account of the manpower cost alone. In addition to

manpower cost, a project would incur costs due to hardware and software required for the project

and the company overheads for administration, office space, etc.

It is important to note that the effort and the duration estimations obtained using the COCOMO

model are called as nominal effort estimate and nominal duration estimate. The term nominal

implies that if anyone tries to complete the project in a time shorter than the estimated duration,

then the cost will increase drastically. But, if anyone completes the project over a longer period

of time than the estimated, then there is almost no decrease in the estimated cost value.

 DEPT OF CSE & IT

 VSSUT, Burla

Example:

Assume that the size of an org organic type software product has been estimated to be 32,000

lines of source code. Assume that the average salary of software engineers be Rs. 15,000/- per

month. Determine the effort required to develop the software product and the nominal

development time.

From the basic COCOMO estimation formula for organic software:

Effort = 2.4 х (32)
1.05

= 91 PM

Nominal development time = 2.5 х (91)
0.38

= 14 months

Cost required to develop the product = 14 х 15,000

= Rs. 210,000/-

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 34

INTERMEDIATE COCOMO MODEL

The basic COCOMO model assumes that effort and development time are functions of the

product size alone. However, a host of other project parameters besides the product size affect

the effort required to develop the product as well as the development time. Therefore, in order to

obtain an accurate estimation of the effort and project duration, the effect of all relevant

parameters must be taken into account. The intermediate COCOMO model recognizes this fact

and refines the initial estimate obtained using the basic COCOMO expressions by using a set of

15 cost drivers (multipliers) based on various attributes of software development. For example, if

modern programming practices are used, the initial estimates are scaled downward by

multiplication with a cost driver having a value less than 1. If there are stringent reliability

requirements on the software product, this initial estimate is scaled upward. Boehm requires the

project manager to rate these 15 different parameters for a particular project on a scale of one to

three. Then, depending on these ratings, he suggests appropriate cost driver values which should

be multiplied with the initial estimate obtained using the basic COCOMO. In general, the cost

drivers can be classified as being attributes of the following items:

Product: The characteristics of the product that are considered include the inherent complexity

of the product, reliability requirements of the product, etc.

Computer: Characteristics of the computer that are considered include the execution speed

required, storage space required etc.

Personnel: The attributes of development personnel that are considered include the experience

level of personnel, programming capability, analysis capability, etc.

Development Environment: Development environment attributes capture the development

facilities available to the developers. An important parameter that is considered is the

sophistication of the automation (CASE) tools used for software development.

Complete COCOMO model

A major shortcoming of both the basic and intermediate COCOMO models is that they consider

a software product as a single homogeneous entity. However, most large systems are made up

several smaller sub-systems. These sub-systems may have widely different characteristics. For

example, some sub-systems may be considered as organic type, some semidetached, and some

embedded. Not only that the inherent development complexity of the subsystems may be

different, but also for some subsystems the reliability requirements may be high, for some the

 DEPT OF CSE & IT

 VSSUT, Burla

development team might have no previous experience of similar development, and so on. The

complete COCOMO model considers these differences in characteristics of the subsystems and

estimates the effort and development time as the sum of the estimates for the individual

subsystems. The cost of each subsystem is estimated separately. This approach reduces the

margin of error in the final estimate.

The following development project can be considered as an example application of the complete

COCOMO model. A distributed Management Information System (MIS) product for an

organization having offices at several places across the country can have the following sub-

components:

• Database part

• Graphical User Interface (GUI) part

• Communication part

Of these, the communication part can be considered as embedded software. The database part

could be semi-detached software, and the GUI part organic software. The costs for these three

components can be estimated separately, and summed up to give the overall cost of the system.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 35

STAFFING LEVEL ESTIMATION

Once the effort required to develop a software has been determined, it is necessary to determine

the staffing requirement for the project. Putnam first studied the problem of what should be a

proper staffing pattern for software projects. He extended the work of Norden who had earlier

investigated the staffing pattern of research and development (R&D) type of projects. In order to

appreciate the staffing pattern of software projects, Norden’s and Putnam’s results must be

understood.

Norden’s Work

Norden studied the staffing patterns of several R & D projects. He found that the staffing pattern

can be approximated by the Rayleigh distribution curve (as shown in fig. 35.1). Norden

represented the Rayleigh curve by the following equation:

E = K/t²
d

* t * e
-t² / 2 t²

d

Where E is the effort required at time t. E is an indication of the number of engineers (or the

staffing level) at any particular time during the duration of the project, K is the area under the

curve, and t
d

is the time at which the curve attains its maximum value. It must be remembered

that the results of Norden are applicable to general R & D projects and were not meant to model

the staffing pattern of software development projects.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 35.1: Rayleigh curve

Putnam’s Work

Putnam studied the problem of staffing of software projects and found that the software

development has characteristics very similar to other R & D projects studied by Norden and that

the Rayleigh-Norden curve can be used to relate the number of delivered lines of code to the

effort and the time required to develop the project. By analyzing a large number of army

projects, Putnam derived the following expression:

L = C
k

K
1/3

t
d

4/3

The various terms of this expression are as follows:

 K is the total effort expended (in PM) in the product development and L is the product

size in KLOC.

 t
d

corresponds to the time of system and integration testing. Therefore, t
d

can be

approximately considered as the time required to develop the software.

 C
k

is the state of technology constant and reflects constraints that impede the progress of

the programmer. Typical values of C
k

= 2 for poor development environment (no

 DEPT OF CSE & IT

 VSSUT, Burla

methodology, poor documentation, and review, etc.), C
k

= 8 for good software

development environment (software engineering principles are adhered to), C
k

= 11 for an

excellent environment (in addition to following software engineering principles,

automated tools and techniques are used). The exact value of C
k

for a specific project can

be computed from the historical data of the organization developing it.

Putnam suggested that optimal staff build-up on a project should follow the Rayleigh curve.

Only a small number of engineers are needed at the beginning of a project to carry out planning

and specification tasks. As the project progresses and more detailed work is required, the number

of engineers reaches a peak. After implementation and unit testing, the number of project staff

falls.

However, the staff build-up should not be carried out in large installments. The team size should

either be increased or decreased slowly whenever required to match the Rayleigh-Norden curve.

Experience shows that a very rapid build up of project staff any time during the project

development correlates with schedule slippage.

It should be clear that a constant level of manpower throughout the project duration would lead

to wastage of effort and increase the time and effort required to develop the product. If a constant

number of engineers are used over all the phases of a project, some phases would be overstaffed

and the other phases would be understaffed causing inefficient use of manpower, leading to

schedule slippage and increase in cost.

Effect of schedule change on cost

By analyzing a large number of army projects, Putnam derived the following expression:

L = C
k

K
1/3

t
d

4/3

Where, K is the total effort expended (in PM) in the product development and L is the product

size in KLOC, t
d

corresponds to the time of system and integration testing and C
k

is the state of

technology constant and reflects constraints that impede the progress of the programmer

Now by using the above expression it is obtained that,

K = L
3
/C

k

3

t
d

4

Or,

K = C/t
d

4

For the same product size, C = L
3
 / Ck

3

is a constant.

 DEPT OF CSE & IT

 VSSUT, Burla

or, K1/K2 = td2
4
/ td1

4

or, K ∝ 1/t
d

4

or, cost ∝ 1/t
d

(as project development effort is equally proportional to project development cost)

From the above expression, it can be easily observed that when the schedule of a project is

compressed, the required development effort as well as project development cost increases in

proportion to the fourth power of the degree of compression. It means that a relatively small

compression in delivery schedule can result in substantial penalty of human effort as well as

development cost. For example, if the estimated development time is 1 year, then in order to

develop the product in 6 months, the total effort required to develop the product (and hence the

project cost) increases 16 times.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 36

PROJECT SCHEDULING

Project-task scheduling is an important project planning activity. It involves deciding which

tasks would be taken up when. In order to schedule the project activities, a software project

manager needs to do the following:

1. Identify all the tasks needed to complete the project.

2. Break down large tasks into small activities.

3. Determine the dependency among different activities.

4. Establish the most likely estimates for the time durations necessary to complete the

activities.

5. Allocate resources to activities.

6. Plan the starting and ending dates for various activities.

7. Determine the critical path. A critical path is the chain of activities that determines the

duration of the project.

The first step in scheduling a software project involves identifying all the tasks necessary to

complete the project. A good knowledge of the intricacies of the project and the development

process helps the managers to effectively identify the important tasks of the project. Next, the

large tasks are broken down into a logical set of small activities which would be assigned to

different engineers. The work breakdown structure formalism helps the manager to breakdown

the tasks systematically after the project manager has broken down the tasks and created the

work breakdown structure, he has to find the dependency among the activities. Dependency

among the different activities determines the order in which the different activities would be

carried out. If an activity A requires the results of another activity B, then activity A must be

scheduled after activity B. In general, the task dependencies define a partial ordering among

tasks, i.e. each tasks may precede a subset of other tasks, but some tasks might not have any

precedence ordering defined between them (called concurrent task). The dependency among the

activities is represented in the form of an activity network.

Once the activity network representation has been worked out, resources are allocated to each

activity. Resource allocation is typically done using a Gantt chart. After resource allocation is

done, a PERT chart representation is developed. The PERT chart representation is suitable for

program monitoring and control. For task scheduling, the project manager needs to decompose

the project tasks into a set of activities. The time frame when each activity is to be performed is

to be determined. The end of each activity is called milestone. The project manager tracks the

progress of a project by monitoring the timely completion of the milestones. If he observes that

the milestones start getting delayed, then he has to carefully control the activities, so that the

overall deadline can still be met.

 DEPT OF CSE & IT

 VSSUT, Burla

Work Breakdown Structure

Work Breakdown Structure (WBS) is used to decompose a given task set recursively into small

activities. WBS provides a notation for representing the major tasks need to be carried out in

order to solve a problem. The root of the tree is labeled by the problem name. Each node of the

tree is broken down into smaller activities that are made the children of the node. Each activity is

recursively decomposed into smaller sub-activities until at the leaf level, the activities requires

approximately two weeks to develop. Fig. 36.1 represents the WBS of a MIS (Management

Information System) software.

While breaking down a task into smaller tasks, the manager has to make some hard decisions. If

a task is broken down into large number of very small activities, these can be carried out

independently. Thus, it becomes possible to develop the product faster (with the help of

additional manpower). Therefore, to be able to complete a project in the least amount of time, the

manager needs to break large tasks into smaller ones, expecting to find more parallelism.

However, it is not useful to subdivide tasks into units which take less than a week or two to

execute. Very fine subdivision means that a disproportionate amount of time must be spent on

preparing and revising various charts.

Fig. 36.1: Work breakdown structure of an MIS problem

 DEPT OF CSE & IT

 VSSUT, Burla

Activity networks and critical path method WBS representation of a project is transformed into

an activity network by representing activities identified in WBS along with their

interdependencies. An activity network shows the different activities making up a project, their

estimated durations, and interdependencies (as shown in fig. 36.2). Each activity is represented

by a rectangular node and the duration of the activity is shown alongside each task.

Managers can estimate the time durations for the different tasks in several ways. One possibility

is that they can empirically assign durations to different tasks. This however is not a good idea,

because software engineers often resent such unilateral decisions. A possible alternative is to let

engineer himself estimate the time for an activity he can assigned to. However, some managers

prefer to estimate the time for various activities themselves. Many managers believe that an

aggressive schedule motivates the engineers to do a better and faster job. However, careful

experiments have shown that unrealistically aggressive schedules not only cause engineers to

compromise on intangible quality aspects, but also are a cause for schedule delays. A good way

to achieve accurately in estimation of the task durations without creating undue schedule

pressures is to have people set their own schedules.

Fig. 36.2: Activity network representation of the MIS problem

Critical Path Method (CPM)

From the activity network representation following analysis can be made. The minimum time

(MT) to complete the project is the maximum of all paths from start to finish. The earliest start

(ES) time of a task is the maximum of all paths from the start to the task. The latest start time is

 DEPT OF CSE & IT

 VSSUT, Burla

the difference between MT and the maximum of all paths from this task to the finish. The earliest

finish time (EF) of a task is the sum of the earliest start time of the task and the duration of the

task. The latest finish (LF) time of a task can be obtained by subtracting maximum of all paths

from this task to finish from MT. The slack time (ST) is LS – EF and equivalently can be written

as LF – EF. The slack time (or float time) is the total time that a task may be delayed before it

will affect the end time of the project. The slack time indicates the “flexibility” in starting and

completion of tasks. A critical task is one with a zero slack time. A path from the start node to

the finish node containing only critical tasks is called a critical path. These parameters for

different tasks for the MIS problem are shown in the following table.

Task ES EF LS LF ST

Specification 0 15 0 15 0

Design database 15 60 15 60 0

Design GUI part 15 45 90 120 75

Code database 60 165 60 165 0

Code GUI part 45 90 120 165 75

Integrate and test 165 285 165 285 0

Write user manual 15 75 225 285 210

The critical paths are all the paths whose duration equals MT. The critical path in fig. 36.2 is

shown with a blue arrow.

Gantt Chart

Gantt charts are mainly used to allocate resources to activities. The resources allocated to

activities include staff, hardware, and software. Gantt charts (named after its developer Henry

Gantt) are useful for resource planning. A Gantt chart is a special type of bar chart where each

bar represents an activity. The bars are drawn along a time line. The length of each bar is

proportional to the duration of time planned for the corresponding activity.

Gantt charts are used in software project management are actually an enhanced version of the

standard Gantt charts. In the Gantt charts used for software project management, each bar

consists of a white part and a shaded part. The shaded part of the bar shows the length of time

each task is estimated to take. The white part shows the slack time, that is, the latest time by

which a task must be finished. A Gantt chart representation for the MIS problem of fig. 36.2 is

shown in the fig. 36.3.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 36.3: Gantt chart representation of the MIS problem

PERT Chart

PERT (Project Evaluation and Review Technique) charts consist of a network of boxes and

arrows. The boxes represent activities and the arrows represent task dependencies. PERT chart

represents the statistical variations in the project estimates assuming a normal distribution. Thus,

in a PERT chart instead of making a single estimate for each task, pessimistic, likely, and

optimistic estimates are made. The boxes of PERT charts are usually annotated with the

pessimistic, likely, and optimistic estimates for every task. Since all possible completion times

between the minimum and maximum duration for every task has to be considered, there are not

one but many critical paths, depending on the permutations of the estimates for each task. This

makes critical path analysis in PERT charts very complex. A critical path in a PERT chart is

shown by using thicker arrows. The PERT chart representation of the MIS problem of fig. 36.2 is

shown in fig. 36.4. PERT charts are a more sophisticated form of activity chart. In activity

diagrams only the estimated task durations are represented. Since, the actual durations might

vary from the estimated durations, the utility of the activity diagrams are limited.

 DEPT OF CSE & IT

 VSSUT, Burla

Gantt chart representation of a project schedule is helpful in planning the utilization of resources,

while PERT chart is useful for monitoring the timely progress of activities. Also, it is easier to

identify parallel activities in a project using a PERT chart. Project managers need to identify the

parallel activities in a project for assignment to different engineers.

Fig. 36.4: PERT chart representation of the MIS problem

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 37

ORGANIZATION STRUCTURE

Usually every software development organization handles several projects at any time. Software

organizations assign different teams of engineers to handle different software projects. Each type

of organization structure has its own advantages and disadvantages so the issue “how is the

organization as a whole structured?” must be taken into consideration so that each software

project can be finished before its deadline.

Functional format vs. project format

There are essentially two broad ways in which a software development organization can be

structured: functional format and project format. In the project format, the project development

staffs are divided based on the project for which they work (as shown in fig. 37.1). In the

functional format, the development staffs are divided based on the functional group to which

they belong. The different projects borrow engineers from the required functional groups for

specific phases to be undertaken in the project and return them to the functional group upon the

completion of the phase.

a) Project Organization

 DEPT OF CSE & IT

 VSSUT, Burla

b) Functional Organization

Fig. 37.1: Schematic representation of the functional and project organization

In the functional format, different teams of programmers perform different phases of a project.

For example, one team might do the requirements specification, another do the design, and so on.

The partially completed product passes from one team to another as the project evolves.

Therefore, the functional format requires considerable communication among the different teams

because the work of one team must be clearly understood by the subsequent teams working on

the project. This requires good quality documentation to be produced after every activity.

In the project format, a set of engineers is assigned to the project at the start of the project and

they remain with the project till the completion of the project. Thus, the same team carries out all

the life cycle activities. Obviously, the functional format requires more communication among

teams than the project format, because one team must understand the work done by the previous

teams.

Advantages of functional organization over project organization

Even though greater communication among the team members may appear as an avoidable

overhead, the functional format has many advantages. The main advantages of a functional

organization are:

• Ease of staffing

 DEPT OF CSE & IT

 VSSUT, Burla

• Production of good quality documents

• Job specialization

• Efficient handling of the problems associated with manpower turnover.

The functional organization allows the engineers to become specialists in particular roles, e.g.

requirements analysis, design, coding, testing, maintenance, etc. They perform these roles again

and again for different projects and develop deep insights to their work. It also results in more

attention being paid to proper documentation at the end of a phase because of the greater need

for clear communication as between teams doing different phases. The functional organization

also provides an efficient solution to the staffing problem. We have already seen that the staffing

pattern should approximately follow the Rayleigh distribution for efficient utilization of the

personnel by minimizing their wait times. The project staffing problem is eased significantly

because personnel can be brought onto a project as needed, and returned to the functional group

when they are no more needed. This possibly is the most important advantage of the functional

organization. A project organization structure forces the manager to take in almost a constant

number of engineers for the entire duration of his project. This results in engineers idling in the

initial phase of the software development and are under tremendous pressure in the later phase of

the development. A further advantage of the functional organization is that it is more effective in

handling the problem of manpower turnover. This is because engineers can be brought in from

the functional pool when needed. Also, this organization mandates production of good quality

documents, so new engineers can quickly get used to the work already done.

Unsuitability of functional format in small organizations

In spite of several advantages of the functional organization, it is not very popular in the software

industry. The apparent paradox is not difficult to explain. The project format provides job

rotation to the team members. That is, each team member takes on the role of the designer,

coder, tester, etc during the course of the project. On the other hand, considering the present skill

shortage, it would be very difficult for the functional organizations to fill in slots for some roles

such as maintenance, testing, and coding groups. Also, another problem with the functional

organization is that if an organization handles projects requiring knowledge of specialized

domain areas, then these domain experts cannot be brought in and out of the project for the

different phases, unless the company handles a large number of such projects. Also, for obvious

reasons the functional format is not suitable for small organizations handling just one or two

projects.

Team Structures

Team structure addresses the issue of organization of the individual project teams. There are

some possible ways in which the individual project teams can be organized. There are mainly

three formal team structures: chief programmer, democratic, and the mixed team organizations

 DEPT OF CSE & IT

 VSSUT, Burla

although several other variations to these structures are possible. Problems of different

complexities and sizes often require different team structures for chief solution.

Chief Programmer Team

In this team organization, a senior engineer provides the technical leadership and is designated as

the chief programmer. The chief programmer partitions the task into small activities and assigns

them to the team members. He also verifies and integrates the products developed by different

team members. The structure of the chief programmer team is shown in fig. 37.2. The chief

programmer provides an authority, and this structure is arguably more efficient than the

democratic team for well-understood problems. However, the chief programmer team leads to

lower team morale, since team-members work under the constant supervision of the chief

programmer. This also inhibits their original thinking. The chief programmer team is subject to

single point failure since too much responsibility and authority is assigned to the chief

programmer.

Fig. 37.2: Chief programmer team structure

The chief programmer team is probably the most efficient way of completing simple and small

projects since the chief programmer can work out a satisfactory design and ask the programmers

to code different modules of his design solution. For example, suppose an organization has

successfully completed many simple MIS projects. Then, for a similar MIS project, chief

programmer team structure can be adopted. The chief programmer team structure works well

when the task is within the intellectual grasp of a single individual. However, even for simple

 DEPT OF CSE & IT

 VSSUT, Burla

and well-understood problems, an organization must be selective in adopting the chief

programmer structure. The chief programmer team structure should not be used unless the

importance of early project completion outweighs other factors such as team morale, personal

developments, life-cycle cost etc.

Democratic Team

The democratic team structure, as the name implies, does not enforce any formal team hierarchy

(as shown in fig. 37.3). Typically, a manager provides the administrative leadership. At different

times, different members of the group provide technical leadership.

Fig. 37.3: Democratic team structure

The democratic organization leads to higher morale and job satisfaction. Consequently, it suffers

from less man-power turnover. Also, democratic team structure is appropriate for less understood

problems, since a group of engineers can invent better solutions than a single individual as in a

chief programmer team. A democratic team structure is suitable for projects requiring less than

five or six engineers and for research-oriented projects. For large sized projects, a pure

democratic organization tends to become chaotic. The democratic team organization encourages

egoless programming as programmers can share and review one another’s work.

Mixed Control Team Organization

The mixed team organization, as the name implies, draws upon the ideas from both the

democratic organization and the chief-programmer organization. The mixed control team

organization is shown pictorially in fig. 37.4. This team organization incorporates both

 DEPT OF CSE & IT

 VSSUT, Burla

hierarchical reporting and democratic set up. In fig. 37.4, the democratic connections are shown

as dashed lines and the reporting structure is shown using solid arrows. The mixed control team

organization is suitable for large team sizes. The democratic arrangement at the senior engineers

level is used to decompose the problem into small parts. Each democratic setup at the

programmer level attempts solution to a single part. Thus, this team organization is eminently

suited to handle large and complex programs. This team structure is extremely popular and is

being used in many software development companies.

Fig. 37.4: Mixed team structure

Egoless Programming Technique

Ordinarily, the human psychology makes an individual take pride in everything he creates using

original thinking. Software development requires original thinking too, although of a different

type. The human psychology makes one emotionally involved with his creation and hinders him

from objective examination of his creations. Just like temperamental artists, programmers find it

extremely difficult to locate bugs in their own programs or flaws in their own design. Therefore,

the best way to find problems in a design or code is to have someone review it. Often, having to

explain one’s program to someone else gives a person enough objectivity to find out what might

have gone wrong. This observation is the basic idea behind code walk throughs. An application

of this, is to encourage a democratic team to think that the design, code, and other deliverables to

belong to the entire group. This is called egoless programming technique.

 DEPT OF CSE & IT

 VSSUT, Burla

Characteristics of a good software engineer

The attributes that good software engineers should possess are as follows:

 Exposure to systematic techniques, i.e. familiarity with software engineering principles.

 Good technical knowledge of the project areas (Domain knowledge).

 Good programming abilities.

 Good communication skills. These skills comprise of oral, written, and interpersonal

skills.

 High motivation.

 Sound knowledge of fundamentals of computer science.

 Intelligence.

 Ability to work in a team

 Discipline, etc.

Studies show that these attributes vary as much as 1:30 for poor and bright candidates. An

experiment conducted by Sackman [1968] shows that the ratio of coding hour for the worst to the

best programmers is 25:1, and the ratio of debugging hours is 28:1. Also, the ability of a software

engineer to arrive at the design of the software from a problem description varies greatly with

respect to the parameters of quality and time.

Technical knowledge in the area of the project (domain knowledge) is an important factor

determining the productivity of an individual for a particular project, and the quality of the

product that he develops. A programmer having a thorough knowledge of database application

(e.g. MIS) may turn out to be a poor data communication engineer. Lack of familiarity with the

application areas can result in low productivity and poor quality of the product.

Since software development is a group activity, it is vital for a software engineer to possess three

main kinds of communication skills: Oral, Written, and Interpersonal. A software engineer not

only needs to effectively communicate with his teammates (e.g. reviews, walk throughs, and

other team communications) but may also have to communicate with the customer to gather

product requirements. Poor interpersonal skills hamper these vital activities and often show up as

poor quality of the product and low productivity. Software engineers are also required at times to

make presentations to the managers and to the customers. This requires a different kind of

communication skill (oral communication skill). A software engineer is also expected to

document his work (design, code, test, etc.) as well as write the users’ manual, training manual,

installation manual, maintenance manual, etc. This requires good written communication skill.

Motivation level of software engineers is another crucial factor contributing to his work quality

and productivity. Even though no systematic studies have been reported in this regard, it is

generally agreed that even bright engineers may turn out to be poor performers when they have

lack motivation. An average engineer who can work with a single mind track can outperform

other engineers, higher incentives and better working conditions have only limited effect on their

 DEPT OF CSE & IT

 VSSUT, Burla

motivation levels. Motivation is to a great extent determined by personal traits, family and social

backgrounds, etc.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 38

RISK MANAGEMENT

A software project can be affected by a large variety of risks. In order to be able to

systematically identify the important risks which might affect a software project, it is necessary

to categorize risks into different classes. The project manager can then examine which risks from

each class are relevant to the project.

There are three main categories of risks which can affect a software project:

1. Project risks

Project risks concern varies forms of budgetary, schedule, personnel, resource, and

customer-related problems. An important project risk is schedule slippage. Since,

software is intangible, it is very difficult to monitor and control a software project. It is

very difficult to control something which cannot be seen. For any manufacturing project,

such as manufacturing of cars, the project manager can see the product taking shape. He

can for instance, see that the engine is fitted, after that the doors are fitted, the car is

getting painted, etc. Thus he can easily assess the progress of the work and control it. The

invisibility of the product being developed is an important reason why many software

projects suffer from the risk of schedule slippage.

2. Technical risks

Technical risks concern potential design, implementation, interfacing, testing, and

maintenance problems. Technical risks also include ambiguous specification, incomplete

specification, changing specification, technical uncertainty, and technical obsolescence.

Most technical risks occur due to the development team’s insufficient knowledge about

the project.

3. Business risks

This type of risks include risks of building an excellent product that no one wants, losing

budgetary or personnel commitments, etc.

Risk Assessment

The objective of risk assessment is to rank the risks in terms of their damage causing potential.

For risk assessment, first each risk should be rated in two ways:

• The likelihood of a risk coming true (denoted as r).

• The consequence of the problems associated with that risk (denoted as s).

 DEPT OF CSE & IT

 VSSUT, Burla

Based on these two factors, the priority of each risk can be computed:

p = r * s

Where, p is the priority with which the risk must be handled, r is the probability of the risk

becoming true, and s is the severity of damage caused due to the risk becoming true. If all

identified risks are prioritized, then the most likely and damaging risks can be handled first and

more comprehensive risk abatement procedures can be designed for these risks.

Risk Containment

After all the identified risks of a project are assessed, plans must be made to contain the most

damaging and the most likely risks. Different risks require different containment procedures. In

fact, most risks require ingenuity on the part of the project manager in tackling the risk.

There are three main strategies to plan for risk containment:

Avoid the risk- This may take several forms such as discussing with the customer to change the

requirements to reduce the scope of the work, giving incentives to the engineers to avoid the risk

of manpower turnover, etc.

Transfer the risk- This strategy involves getting the risky component developed by a third

party, buying insurance cover, etc.

Risk reduction- This involves planning ways to contain the damage due to a risk. For example,

if there is risk that some key personnel might leave, new recruitment may be planned.

Risk Leverage

To choose between the different strategies of handling a risk, the project manager must consider

the cost of handling the risk and the corresponding reduction of risk. For this the risk leverage of

the different risks can be computed.

Risk leverage is the difference in risk exposure divided by the cost of reducing the risk. More

formally,

risk leverage = (risk exposure before reduction – risk exposure after reduction) / (cost

of reduction)

Risk related to schedule slippage

Even though there are three broad ways to handle any risk, but still risk handling requires a lot of

ingenuity on the part of a project manager. As an example, it can be considered the options

available to contain an important type of risk that occurs in many software projects – that of

schedule slippage. Risks relating to schedule slippage arise primarily due to the intangible nature

 DEPT OF CSE & IT

 VSSUT, Burla

of software. Therefore, these can be dealt with by increasing the visibility of the software

product. Visibility of a software product can be increased by producing relevant documents

during the development process wherever meaningful and getting these documents reviewed by

an appropriate team. Milestones should be placed at regular intervals through a software

engineering process to provide a manager with regular indication of progress. Completion of a

phase of the development process before followed need not be the only milestones. Every phase

can be broken down to reasonable-sized tasks and milestones can be scheduled for these tasks

too. A milestone is reached, once documentation produced as part of a software engineering task

is produced and gets successfully reviewed. Milestones need not be placed for every activity. An

approximate rule of thumb is to set a milestone every 10 to 15 days.

Software Configuration Management

The results (also called as the deliverables) of a large software development effort typically

consist of a large number of objects, e.g. source code, design document, SRS document, test

document, user’s manual, etc. These objects are usually referred to and modified by a number of

software engineers through out the life cycle of the software. The state of all these objects at any

point of time is called the configuration of the software product. The state of each deliverable

object changes as development progresses and also as bugs are detected and fixed.

Release vs. Version vs. Revision

A new version of a software is created when there is a significant change in functionality,

technology, or the hardware it runs on, etc. On the other hand a new revision of a software refers

to minor bug fix in that software. A new release is created if there is only a bug fix, minor

enhancements to the functionality, usability, etc.

For example, one version of a mathematical computation package might run on Unix-based

machines, another on Microsoft Windows and so on. As a software is released and used by the

customer, errors are discovered that need correction. Enhancements to the functionalities of the

software may also be needed. A new release of software is an improved system intended to

replace an old one. Often systems are described as version m, release n; or simple m.n. Formally,

a history relation is version of can be defined between objects. This relation can be split into two

sub relations is revision of and is variant of.

Necessity of software configuration management

There are several reasons for putting an object under configuration management. But, possibly

the most important reason for configuration management is to control the access to the different

deliverable objects. Unless strict discipline is enforced regarding updation and storage of

different objects, several problems appear. The following are some of the important problems

that appear if configuration management is not used.

 DEPT OF CSE & IT

 VSSUT, Burla

 Inconsistency problem when the objects are replicated. A scenario can be considered

where every software engineer has a personal copy of an object (e.g. source code). As

each engineer makes changes to his local copy, he is expected to intimate them to other

engineers, so that the changes in interfaces are uniformly changed across all modules.

However, many times an engineer makes changes to the interfaces in his local copies and

forgets to intimate other teammates about the changes. This makes the different copies of

the object inconsistent. Finally, when the product is integrated, it does not work.

Therefore, when several team members work on developing an object, it is necessary for

them to work on a single copy of the object, otherwise inconsistency may arise.

 Problems associated with concurrent access. Suppose there is a single copy of a

problem module, and several engineers are working on it. Two engineers may

simultaneously carry out changes to different portions of the same module, and while

saving overwrite each other. Though the problem associated with concurrent access to

program code has been explained, similar problems occur for any other deliverable

object.

 Providing a stable development environment. When a project is underway, the team

members need a stable environment to make progress. Suppose somebody is trying to

integrate module A, with the modules B and C, he cannot make progress if developer of

module C keeps changing C; this can be especially frustrating if a change to module C

forces him to recompile A. When an effective configuration management is in place, the

manager freezes the objects to form a base line. When anyone needs any of the objects

under configuration control, he is provided with a copy of the base line item. The

requester makes changes to his private copy. Only after the requester is through with all

modifications to his private copy, the configuration is updated and a new base line gets

formed instantly. This establishes a baseline for others to use and depend on. Also,

configuration may be frozen periodically. Freezing a configuration may involve archiving

everything needed to rebuild it. (Archiving means copying to a safe place such as a

magnetic tape).

 System accounting and maintaining status information. System accounting keeps

track of who made a particular change and when the change was made.

 Handling variants. Existence of variants of a software product causes some peculiar

problems. Suppose somebody has several variants of the same module, and finds a bug in

one of them. Then, it has to be fixed in all versions and revisions. To do it efficiently, he

should not have to fix it in each and every version and revision of the software separately.

 DEPT OF CSE & IT

 VSSUT, Burla

Software Configuration Management Activities

Normally, a project manager performs the configuration management activity by using an

automated configuration management tool. A configuration management tool provides

automated support for overcoming all the problems mentioned above. In addition, a

configuration management tool helps to keep track of various deliverable objects, so that the

project manager can quickly and unambiguously determine the current state of the project. The

configuration management tool enables the engineers to change the various components in a

controlled manner.

Configuration management is carried out through two principal activities:

• Configuration identification involves deciding which parts of the system should be kept

track of.

• Configuration control ensures that changes to a system happen smoothly.

Configuration Identification

The project manager normally classifies the objects associated with a software development

effort into three main categories: controlled, pre controlled, and uncontrolled. Controlled objects

are those which are already put under configuration control. One must follow some formal

procedures to change them. Pre controlled objects are not yet under configuration control, but

will eventually be under configuration control. Uncontrolled objects are not and will not be

subjected to configuration control. Controllable objects include both controlled and pre

controlled objects. Typical controllable objects include:

• Requirements specification document

• Design documents

Tools used to build the system, such as compilers, linkers, lexical analyzers, parsers, etc.

• Source code for each module

• Test cases

• Problem reports

The configuration management plan is written during the project planning phase and it lists all

controlled objects. The managers who develop the plan must strike a balance between controlling

too much, and controlling too little. If too much is controlled, overheads due to configuration

management increase to unreasonably high levels. On the other hand, controlling too little might

lead to confusion when something changes.

Configuration Control

Configuration control is the process of managing changes to controlled objects. Configuration

control is the part of a configuration management system that most directly affects the day-to-

day operations of developers. The configuration control system prevents unauthorized changes to

 DEPT OF CSE & IT

 VSSUT, Burla

any controlled objects. In order to change a controlled object such as a module, a developer can

get a private copy of the module by a reserve operation as shown in fig. 38.1. Configuration

management tools allow only one person to reserve a module at a time. Once an object is

reserved, it does not allow anyone else to reserve this module until the reserved module is

restored as shown in fig. 38.1. Thus, by preventing more than one engineer to simultaneously

reserve a module, the problems associated with concurrent access are solved.

Fig. 38.1: Reserve and restore operation in configuration control

It can be shown how the changes to any object that is under configuration control can be

achieved. The engineer needing to change a module first obtains a private copy of the module

through a reserve operation. Then, he carries out all necessary changes on this private copy.

However, restoring the changed module to the system configuration requires the permission of a

change control board (CCB). The CCB is usually constituted from among the development team

members. For every change that needs to be carried out, the CCB reviews the changes made to

the controlled object and certifies several things about the change:

1. Change is well-motivated.

2. Developer has considered and documented the effects of the change.

3. Changes interact well with the changes made by other developers.

4. Appropriate people (CCB) have validated the change, e.g. someone has tested the changed

code, and has verified that the change is consistent with the requirement.

 DEPT OF CSE & IT

 VSSUT, Burla

The change control board (CCB) sounds like a group of people. However, except for very

large projects, the functions of the change control board are normally discharged by the

project manager himself or some senior member of the development team. Once the CCB

reviews the changes to the module, the project manager updates the old base line through a

restore operation (as shown in fig. 38.1). A configuration control tool does not allow a

developer to replace an object he has reserved with his local copy unless he gets an

authorization from the CCB. By constraining the developers’ ability to replace reserved

objects, a stable environment is achieved. Since a configuration management tool allows only

one engineer to work on one module at any one time, problem of accidental overwriting is

eliminated. Also, since only the manager can update the baseline after the CCB approval,

unintentional changes are eliminated.

Configuration Management Tools

SCCS and RCS are two popular configuration management tools available on most UNIX

systems. SCCS or RCS can be used for controlling and managing different versions of text files.

SCCS and RCS do not handle binary files (i.e. executable files, documents, files containing

diagrams, etc.) SCCS and RCS provide an efficient way of storing versions that minimizes the

amount of occupied disk space. Suppose, a module MOD is present in three versions MOD1.1,

MOD1.2, and MOD1.3. Then, SCCS and RCS stores the original module MOD1.1 together with

changes needed to transform MOD1.1 into MOD1.2 and MOD1.2 to MOD1.3. The changes

needed to transform each base lined file to the next version are stored and are called deltas. The

main reason behind storing the deltas rather than storing the full version files is to save disk

space. The change control facilities provided by SCCS and RCS include the ability to

incorporate restrictions on the set of individuals who can create new versions, and facilities for

checking components in and out (i.e. reserve and restore operations). Individual developers

check out components and modify them. After they have made all necessary changes to a module

and after the changes have been reviewed, they check in the changed module into SCCS or RCS.

Revisions are denoted by numbers in ascending order, e.g., 1.1, 1.2, 1.3 etc. It is also possible to

create variants or revisions of a component by creating a fork in the development history.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 39

COMPUTER AIDED SOFTWARE ENGINEERING

CASE tool and its scope

A CASE (Computer Aided Software Engineering) tool is a generic term used to denote any form

of automated support for software engineering. In a more restrictive sense, a CASE tool means

any tool used to automate some activity associated with software development. Many CASE

tools are available. Some of these CASE tools assist in phase related tasks such as specification,

structured analysis, design, coding, testing, etc.; and others to non-phase activities such as project

management and configuration management.

Reasons for using CASE tools

The primary reasons for using a CASE tool are:

• To increase productivity

• To help produce better quality software at lower cost

CASE environment

Although individual CASE tools are useful, the true power of a tool set can be realized only

when these set of tools are integrated into a common framework or environment. CASE tools are

characterized by the stage or stages of software development life cycle on which they focus.

Since different tools covering different stages share common information, it is required that they

integrate through some central repository to have a consistent view of information associated

with the software development artifacts. This central repository is usually a data dictionary

containing the definition of all composite and elementary

data items. Through the central repository all the CASE tools in a CASE environment share

common information among themselves. Thus a CASE environment facilities the automation of

the step-by-step methodologies for software development. A schematic representation of a CASE

environment is shown in fig. 39.1.

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 39.1: A CASE Environment

CASE environment vs programming environment

A CASE environment facilitates the automation of the step-by-step methodologies for software

development. In contrast to a CASE environment, a programming environment is an integrated

collection of tools to support only the coding phase of software development.

Benefits of CASE

Several benefits accrue from the use of a CASE environment or even isolated CASE tools. Some

of those benefits are:

 A key benefit arising out of the use of a CASE environment is cost saving through all

development phases. Different studies carry out to measure the impact of CASE put the

effort reduction between 30% to 40%.

 Use of CASE tools leads to considerable improvements to quality. This is mainly due to

the facts that one can effortlessly iterate through the different phases of software

development and the chances of human error are considerably reduced.

 DEPT OF CSE & IT

 VSSUT, Burla

 CASE tools help produce high quality and consistent documents. Since the important

data relating to a software product are maintained in a central repository, redundancy in

the stored data is reduced and therefore chances of inconsistent documentation is reduced

to a great extent.

 CASE tools take out most of the drudgery in a software engineer’s work. For example,

they need not check meticulously the balancing of the DFDs but can do it effortlessly

through the press of a button.

 CASE tools have led to revolutionary cost saving in software maintenance efforts. This

arises not only due to the tremendous value of a CASE environment in traceability and

consistency checks, but also due to the systematic information capture during the various

phases of software development as a result of adhering to a CASE environment.

 Introduction of a CASE environment has an impact on the style of working of a

company, and makes it oriented towards the structured and orderly approach.

Requirements of a prototyping CASE tool

Prototyping is useful to understand the requirements of complex software products, to

demonstrate a concept, to market new ideas, and so on. The important features of a prototyping

CASE tool are as follows:

• Define user interaction

• Define the system control flow

• Store and retrieve data required by the system

• Incorporate some processing logic

Features of a good prototyping CASE tool

There are several stand-alone prototyping tools. But a tool that integrates with the data dictionary

can make use of the entries in the data dictionary, help in populating the data dictionary and

ensure the consistency between the design data and the prototype. A good prototyping tool

should support the following features:

 Since one of the main uses of a prototyping CASE tool is graphical user interface (GUI)

development, prototyping CASE tool should support the user to create a GUI using a

graphics editor. The user should be allowed to define all data entry forms, menus and

controls.

 It should integrate with the data dictionary of a CASE environment.

 If possible, it should be able to integrate with external user defined modules written in C

or some popular high level programming languages.

 The user should be able to define the sequence of states through which a created

prototype can run. The user should also be allowed to control the running of the

prototype.

 DEPT OF CSE & IT

 VSSUT, Burla

 The run time system of prototype should support mock runs of the actual system and

management of the input and output data.

Structured analysis and design with CASE tools

Several diagramming techniques are used for structured analysis and structured design. The

following supports might be available from CASE tools.

 A CASE tool should support one or more of the structured analysis and design

techniques.

 It should support effortlessly drawing analysis and design diagrams.

 It should support drawing for fairly complex diagrams, preferably through a hierarchy of

levels.

 The CASE tool should provide easy navigation through the different levels and through

the design and analysis.

 The tool must support completeness and consistency checking across the design and

analysis and through all levels of analysis hierarchy. Whenever it is possible, the system

should disallow any inconsistent operation, but it may be very difficult to implement such

a feature. Whenever there arises heavy computational load while consistency checking, it

should be possible to temporarily disable consistency checking.

Code generation and CASE tools

As far as code generation is concerned, the general expectation of a CASE tool is quite low. A

reasonable requirement is traceability from source file to design data. More pragmatic supports

expected from a CASE tool during code generation phase are the following:

 The CASE tool should support generation of module skeletons or templates in one or

more popular languages. It should be possible to include copyright message, brief

description of the module, author name and the date of creation in some selectable

format.

 The tool should generate records, structures, class definition automatically from the

contents of the data dictionary in one or more popular languages.

 It should generate database tables for relational database management systems.

 The tool should generate code for user interface from prototype definition for X window

and MS window based applications.

Test case generation CASE tool

The CASE tool for test case generation should have the following features:

 It should support both design and requirement testing.

 It should generate test set reports in ASCII format which can be directly imported into the

test plan document.

 DEPT OF CSE & IT

 VSSUT, Burla

Hardware and environmental requirements

In most cases, it is the existing hardware that would place constraints upon the CASE tool

selection. Thus, instead of defining hardware requirements for a CASE tool, the task at hand

becomes to fit in an optimal configuration of CASE tool in the existing hardware capabilities.

Therefore, it can be emphasized on selecting the most optimal CASE tool configuration for a

given hardware configuration.

The heterogeneous network is one instance of distributed environment and this can be chosen for

illustration as it is more popular due to its machine independent features. The CASE tool

implementation in heterogeneous network makes use of client-server paradigm. The multiple

clients who run different modules access data dictionary through this server. The data dictionary

server may support one or more projects. Though it is possible to run many servers for different

projects but distributed implementation of data dictionary is not common.

The tool set is integrated through the data dictionary which supports multiple projects, multiple

users working simultaneously and allows sharing information between users and projects. The

data dictionary provides consistent view of all project entities, e.g. a data record definition and its

entity-relationship diagram be consistent. The server should depict the per-project logical view

of the data dictionary. This means that it should allow back up/restore, copy, cleaning part of the

data dictionary, etc.

The tool should work satisfactorily for maximum possible number of users working

simultaneously. The tool should support multi-windowing environment for the users. This is

important to enable the users to see more than one diagram at a time. It also facilitates navigation

and switching from one part to the other.

Documentation Support

The deliverable documents should be organized graphically and should be able to incorporate

text and diagrams from the central repository. This helps in producing up-to-date documentation.

The CASE tool should integrate with one or more of the commercially available desktop

publishing packages. It should be possible to export text, graphics, tables, data dictionary reports

to the DTP package in standard forms such as PostScript.

Project Management Support

The CASE tool should support collecting, storing, and analyzing information on the software

project’s progress such as the estimated task duration, scheduled and actual task start, completion

date, dates and results of the reviews, etc.

 DEPT OF CSE & IT

 VSSUT, Burla

External Interface

The CASE tool should allow exchange of information for reusability of design. The information

which is to be exported by the CASE tool should be preferably in ASCII format and support

open architecture. Similarly, the data dictionary should provide a programming interface to

access information. It is required for integration of custom utilities, building new techniques, or

populating the data dictionary.

Reverse Engineering

The CASE tool should support generation of structure charts and data dictionaries from the

existing source codes. It should populate the data dictionary from the source code. If the tool is

used for re-engineering information systems, it should contain conversion tool from indexed

sequential file structure, hierarchical and network database to relational database systems.

Data Dictionary Interface

The data dictionary interface should provide view and update access to the entities and relations

stored in it. It should have print facility to obtain hard copy of the viewed screens. It should

provide analysis reports like cross-referencing, impact analysis, etc. Ideally, it should support a

query language to view its contents.

Second-generation CASE tool

An important feature of the second-generation CASE tool is the direct support of any adapted

methodology. This would necessitate the function of a CASE administrator organization who can

tailor the CASE tool to a particular methodology. In addition, the second-generation CASE tools

have following features:

 Intelligent diagramming support- The fact that diagramming techniques are useful for

system analysis and design is well established. The future CASE tools would provide

help to aesthetically and automatically lay out the diagrams.

 Integration with implementation environment- The CASE tools should provide

integration between design and implementation.

 Data dictionary standards- The user should be allowed to integrate many development

tools into one environment. It is highly unlikely that any one vendor will be able to

deliver a total solution. Moreover, a preferred tool would require tuning up for a

particular system. Thus the user would act as a system integrator. This is possibly only if

some standard on data dictionary emerges.

 Customization support- The user should be allowed to define new types of objects and

connections. This facility may be used to build some special methodologies. Ideally it

should be possible to specify the rules of a methodology to a rule engine for carrying out

the necessary consistency checks.

 DEPT OF CSE & IT

 VSSUT, Burla

Architecture of a CASE environment

The architecture of a typical modern CASE environment is shown diagrammatically in fig. 39.2.

The important components of a modern CASE environment are user interface, tool set, object

management system (OMS), and a repository. Characteristics of a tool set have been discussed

earlier.

Fig. 39.2: Architecture of a Modern CASE Environment

User Interface

The user interface provides a consistent framework for accessing the different tools thus making

it easier for the users to interact with the different tools and reducing the overhead of learning

how the different tools are used.

Object Management System (OMS) and Repository

Different case tools represent the software product as a set of entities such as specification,

design, text data, project plan, etc. The object management system maps these logical entities

such into the underlying storage management system (repository). The commercial relational

database management systems are geared towards supporting large volumes of information

structured as simple relatively short records. There are a few types of entities but large number of

instances. By contrast, CASE tools create a large number of entity and relation types with

 DEPT OF CSE & IT

 VSSUT, Burla

perhaps a few instances of each. Thus the object management system takes care of appropriately

mapping into the underlying storage management system.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 40

SOFTWARE REUSE

Advantages of software reuse

Software products are expensive. Software project managers are worried about the high cost of

software development and are desperately look for ways to cut development cost. A possible

way to reduce development cost is to reuse parts from previously developed software. In addition

to reduced development cost and time, reuse also leads to higher quality of the developed

products since the reusable components are ensured to have high quality.

Artifacts that can be reused

It is important to know about the kinds of the artifacts associated with software development that

can be reused. Almost all artifacts associated with software development, including project plan

and test plan can be reused. However, the prominent items that can be effectively reused are:

• Requirements specification

• Design

• Code

• Test cases

• Knowledge

Pros and cons of knowledge reuse

Knowledge is the most abstract development artifact that can be reused. Out of all the reuse

artifacts i.e. requirements specification, design, code, test cases, reuse of knowledge occurs

automatically without any conscious effort in this direction. However, two major difficulties with

unplanned reuse of knowledge are that a developer experienced in one type of software product

might be included in a team developing a different type of software. Also, it is difficult to

remember the details of the potentially reusable development knowledge. A planned reuse of

knowledge can increase the effectiveness of reuse. For this, the reusable knowledge should be

systematically extracted and documented. But, it is usually very difficult to extract and document

reusable knowledge.

Easiness of reuse of mathematical functions

The routines of mathematical libraries are being reused very successfully by almost every

programmer. No one in his right mind would think of writing a routine to compute sine or

cosine. Reuse of commonly used mathematical functions is easy. Several interesting aspects

emerge. Cosine means the same to all. Everyone has clear ideas about what kind of argument

should cosine take, the type of processing to be carried out and the results returned. Secondly,

 DEPT OF CSE & IT

 VSSUT, Burla

mathematical libraries have a small interface. For example, cosine requires only one parameter.

Also, the data formats of the parameters are standardized.

Basic issues in any reuse program

The following are some of the basic issues that must be clearly understood for starting any reuse

program.

• Component creation

• Component indexing and storing

• Component search

• Component understanding

• Component adaptation

• Repository maintenance

Component creation- For component creation, the reusable components have to be first

identified. Selection of the right kind of components having potential for reuse is important.

Domain analysis is a promising technique which can be used to create reusable components.

Component indexing and storing- Indexing requires classification of the reusable

components so that they can be easily searched when looking for a component for reuse. The

components need to be stored in a Relational Database Management System (RDBMS) or an

Object-Oriented Database System (ODBMS) for efficient access when the number of

components becomes large.

Component searching- The programmers need to search for right components matching

their requirements in a database of components. To be able to search components efficiently,

the programmers require a proper method to describe the components that they are looking

for.

Component understanding- The programmers need a precise and sufficiently complete

understanding of what the component does to be able to decide whether they can reuse the

component. To facilitate understanding, the components should be well documented and

should do something simple.

Component adaptation- Often, the components may need adaptation before they can be

reused, since a selected component may not exactly fit the problem at hand. However,

tinkering with the code is also not a satisfactory solution because this is very likely to be a

source of bugs.

Repository maintenance- A component repository once is created requires continuous

maintenance. New components, as and when created have to be entered into the repository.

 DEPT OF CSE & IT

 VSSUT, Burla

The faulty components have to be tracked. Further, when new applications emerge, the older

applications become obsolete. In this case, the obsolete components might have to be

removed from the repository.

Domain Analysis

The aim of domain analysis is to identify the reusable components for a problem domain.

Reuse domain- A reuse domain is a technically related set of application areas. A body of

information is considered to be a problem domain for reuse, if a deep and comprehensive

relationship exists among the information items as categorized by patterns of similarity among

the development components of the software product. A reuse domain is shared understanding of

some community, characterized by concepts, techniques, and terminologies that show some

coherence. Examples of domains are accounting software domain, banking software domain,

business software domain, manufacturing automation software domain, telecommunication

software domain, etc.

Just to become familiar with the vocabulary of a domain requires months of interaction with the

experts. Often, one needs to be familiar with a network of related domains for successfully

carrying out domain analysis. Domain analysis identifies the objects, operations, and the

relationships among them. For example, consider the airline reservation system, the reusable

objects can be seats, flights, airports, crew, meal orders, etc. The reusable operations can be

scheduling a flight, reserving a seat, assigning crew to flights, etc. The domain analysis

generalizes the application domain. A domain model transcends specific applications. The

common characteristics or the similarities between systems are generalized.

During domain analysis, a specific community of software developers gets together to discuss

community-wide-solutions. Analysis of the application domain is required to identify the

reusable components. The actual construction of reusable components for a domain is called

domain engineering.

Evolution of a reuse domain- The ultimate result of domain analysis is development of

problem-oriented languages. The problem-oriented languages are also known as application

generators. These application generators, once developed form application development

standards. The domains slowly develop. As a domain develops, it is distinguishable the various

stages it undergoes:

Stage 1: There is no clear and consistent set of notations. Obviously, no reusable components are

available. All software is written from scratch.

Stage 2: Here, only experience from similar projects is used in a development effort. This means

that there is only knowledge reuse.

 DEPT OF CSE & IT

 VSSUT, Burla

Stage 3: At this stage, the domain is ripe for reuse. The set of concepts are stabilized and the

notations standardized. Standard solutions to standard problems are available. There is both

knowledge and component reuse.

Stage 4: The domain has been fully explored. The software development for the domain can be

largely automated. Programs are not written in the traditional sense any more. Programs are

written using a domain specific language, which is also known as an application generator.

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 41

REUSE APPROACH

Components Classification

Components need to be properly classified in order to develop an effective indexing and storage

scheme. Hardware reuse has been very successful. Hardware components are classified using a

multilevel hierarchy. At the lowest level, the components are described in several forms: natural

language description, logic schema, timing information, etc. The higher the level at which a

component is described, the more is the ambiguity. This has motivated the Prieto-Diaz’s

classification scheme.

Prieto-Diaz’s classification scheme: Each component is best described using a number of

different characteristics or facets. For example, objects can be classified using the following:

Searching- The domain repository may contain thousands of reuse items. A popular search

technique that has proved to be very effective is one that provides a web interface to the

repository. Using such a web interface, one would search an item using an approximate

automated search using key words, and then from these results do a browsing using the links

provided to look up related items. The approximate automated search locates products that

appear to fulfill some of the specified requirements. The items located through the approximate

search serve as a starting point for browsing the repository. These serve as the starting point for

browsing the repository. The developer may follow links to other products until a sufficiently

good match is found. Browsing is done using the keyword-to-keyword, keyword-to-product, and

product-to-product links. These links help to locate additional products and compare their

detailed attributes. Finding a satisfactorily item from the repository may require several locations

of approximate search followed by browsing. With each iteration, the developer would get a

better understanding of the available products and their differences. However, we must

remember that the items to be searched may be components, designs, models, requirements, and

even knowledge.

Repository maintenance - Repository maintenance involves entering new items, retiring those

items which are no more necessary, and modifying the search attributes of items to improve the

effectiveness of search. The software industry is always trying to implement something that has

not been quite done before. As patterns requirements emerge, new reusable components are

identified, which may ultimately become more or less the standards. However, as technology

advances, some components which are still reusable, do not fully address the current

requirements. On the other hand, restricting reuse to highly mature components, sacrifices one of

that creates potential reuse opportunity. Making a product available before it has been thoroughly

 DEPT OF CSE & IT

 VSSUT, Burla

assessed can be counter productive. Negative experiences tend to dissolve the trust in the entire

reuse framework.

Application generator -The problem- oriented languages are known as application generators.

Application generators translate specifications into application programs. The specification is

usually written using 4GL. The specification might also in a visual form. Application generator

can be applied successfully to data processing application, user interface, and compiler

development.

Advantages of application generators

Application generators have significant advantages over simple parameterized programs. The

biggest of these is that the application generators can express the variant information in an

appropriate language rather than being restricted to function parameters, named constants, or

tables. The other advantages include fewer errors, easier to maintain, substantially reduced

development effort, and the fact that one need not bother about the implementation details.

Shortcomings of application generators

Application generators are handicapped when it is necessary to support some new concepts or

features. Application generators are less successful with the development of applications with

close interaction with hardware such as real-time systems.

Re-use at organization level

Achieving organization-level reuse requires adoption of the following steps:

• Assessing a product’s potential for reuse

• Refining products for greater reusability

• Entering the product in the reuse repository

Assessing a product’s potential for reuse. Assessment of components reuse potential

can be obtained from an analysis of a questionnaire circulated among the developers. The

questionnaire can be devised to access a component’s reusability. The programmers

working in similar application domain can be used to answer the questionnaire about the

product’s reusability. Depending on the answers given by the programmers, either the

component be taken up for reuse as it is, it is modified and refined before it is entered

into the reuse repository, or it is ignored. A sample questionnaire to assess a component’s

reusability is the following.

• Is the component’s functionality required for implementation of systems in the

future?

• How common is the component’s function within its domain?

• Would there be a duplication of functions within the domain if the component is

taken up?

 DEPT OF CSE & IT

 VSSUT, Burla

• Is the component hardware dependent?

• Is the design of the component optimized enough?

• If the component is non-reusable, then can it be decomposed to yield some reusable

components?

Can we parameterize a non-reusable component so that it becomes reusable?

Refining products for greater reusability. For a product to be reusable, it must be

relatively easy to adapt it to different contexts. Machine dependency must be abstracted

out or localized using data encapsulation techniques. The following refinements may be

carried out:

• Name generalization: The names should be general, rather than being directly

related to a specific application.

• Operation generalization: Operations should be added to make the component

more general. Also, operations that are too specific to an application can be removed.

• Exception generalization: This involves checking each component to see which

exceptions it might generate. For a general component, several types of exceptions

might have to be handled.

• Handling portability problems: Programs typically make some assumption

regarding the representation of information in the underlying machine. These

assumptions are in general not true for all machines. The programs also often need to

call some operating system functionality and these calls may not be same on all

machines. Also, programs use some function libraries, which may not be available on

all host machines. A portability solution to overcome these problems is shown in fig.

41.1. The portability solution suggests that rather than call the operating system and

I/O procedures directly, abstract versions of these should be called by the application

program. Also, all platform-related calls should be routed through the portability

interface. One problem with this solution is the significant overhead incurred, which

makes it inapplicable to many real-time systems and applications requiring very fast

response.

